

EXERCICE 2: 3 points

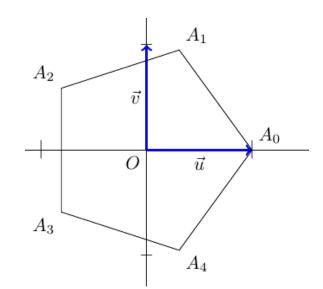
Commun à tous les candidats

L'objectif de cet exercice est de trouver une méthode pour construire à la règle et au compas un pentagone régulier.

Dans le plan complexe muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère le pentagone régulier $A_0A_1A_2A_3A_4$, de centre O tel que

 $A_0A_1A_2A_3A_4$, de centre O tel que On rappelle que dans le pentagone régulier $A_0A_1A_2A_3A_4$, ci-contre :

- les cinq côtés sont de même longueur;
- les points A_0 , A_1 , A_2 , A_3 et A_4 appartiennent au cercle trigonométrique;
- pour tout entier k appartenant à $\{0; 1; 2; 3\}$ on a $(\overrightarrow{OA_k}; \overrightarrow{OA_{k+1}}) = \frac{2\pi}{5}$.



- 1. On considère les points B d'affixe -1 et J d'affixe $\frac{i}{2}$. Le cercle (C) de centre J et de rayon $\frac{1}{2}$ coupe le segment [BJ] en un point K. Calculer BJ, puis en déduire BK.
- 2. a. Donner sous forme exponentielle l'affixe du point A_2 . Justifier brièvement.
 - b. Démontrer que $BA_2^2 = 2 + 2\cos\left(\frac{4\pi}{5}\right)$
 - c. Un logiciel de calcul formel affiche les résultats ci-dessous, que l'on pourra utiliser sans justification :
 En déduire, grâce à ces résultats, que BA₂ = BK.

Calcul formel

$$cos(4 \cdot pi/5) \qquad \frac{1}{4} \cdot (-\sqrt{5} - 1)$$

$$sqrt((3-sqrt(5))/2) \qquad \frac{1}{2} \cdot (\sqrt{5} - 1)$$

« sqrt »signifie « racine carrée »

3. Dans le repère $(0, \vec{u}, \vec{v})$ donné en annexe, construire à la règle et au compas un pentagone régulier. N'utiliser ni le rapporteur ni les graduations de la règle et laisser apparents les traits de construction.

CORRECTION

1. On considère les points B d'affixe -1 et J d'affixe $\frac{i}{2}$.

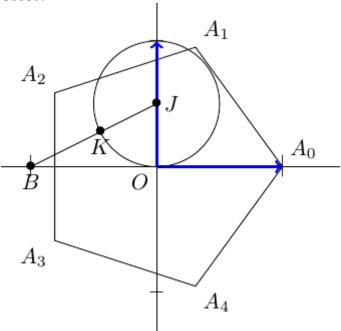
Le cercle (C) de centre J et de rayon $\frac{1}{2}$ coupe le segment [BJ] en un point K. Calculer BJ, puis en déduire BK.

Le triangle BOJ est rectangle en O donc $BJ^2 = BO^2 + OJ^2 \iff BJ^2 = 1^2 + \left(\frac{1}{2}\right)^2 \iff BJ^2 = \frac{5}{2}$

Ce qui prouve que $BJ = \frac{\sqrt{5}}{2}$.

D'autre part K appartient au cercle de centre J et de rayon $\frac{1}{2}$ donc $JK = \frac{1}{2}$. K étant sur le segment [BJ] on en déduit que

$$BK = BJ - JK \iff BK = \frac{\sqrt{5}}{2} - \frac{1}{2}$$
$$\iff BK = \frac{\sqrt{5} - 1}{2}$$



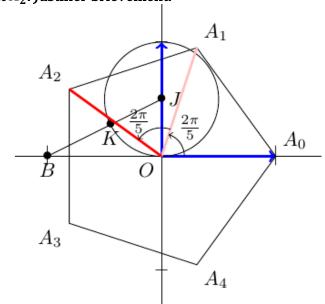
2. a. Donner sous forme exponentielle l'affixe du point A_2 . Justifier brièvement.

Le pentagone $A_0A_1A_2A_3A_4$ est régulier donc $(\overrightarrow{OA_0}; \overrightarrow{OA_1}) = \frac{2\pi}{5}$ et $(\overrightarrow{OA_1}; \overrightarrow{OA_2}) = \frac{2\pi}{5}$ d'où $(\overrightarrow{OA_0}; \overrightarrow{OA_2}) = \frac{2\pi}{5} + \frac{2\pi}{5}$ soit $(\overrightarrow{OA_0}; \overrightarrow{OA_2}) = \frac{4\pi}{5} \Leftrightarrow (\overrightarrow{u}; \overrightarrow{OA_2}) = \frac{4\pi}{5}$

On a aussi $OA_2 = 1$.

Soit $A_2(z_2)$ avec $z_2 \in \mathbb{C}$. $(\vec{u}; \overrightarrow{OA_2}) = \frac{4\pi}{5} \Leftrightarrow$ $Arg(z_2) = \frac{4\pi}{5}$ et $OA_2 = 1 \Leftrightarrow |z_2| = 1$.

D'où
$$z_2 = 1 \times e^{i\frac{4\pi}{5}} \Leftrightarrow \mathbf{z_2} = e^{i\frac{4\pi}{5}}$$



2. b. Démontrer que BA₂² = 2 + 2 $cos\left(\frac{4\pi}{5}\right)$

On a
$$B(-1)$$
 et $A_2\left(e^{i\frac{4\pi}{5}}\right)$

$$BA_{2} = \left| e^{i\frac{4\pi}{5}} - (-1) \right| = \left| e^{i\frac{4\pi}{5}} + 1 \right|$$

$$= \left| \cos\left(\frac{4\pi}{5}\right) + i \sin\left(\frac{4\pi}{5}\right) + 1 \right|$$

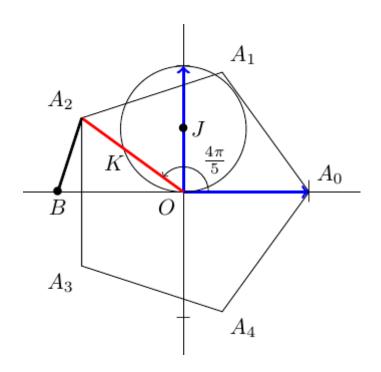
$$= \left| 1 + \cos\left(\frac{4\pi}{5}\right) + i \sin\left(\frac{4\pi}{5}\right) \right|$$

$$= \sqrt{\left(1 + \cos\left(\frac{4\pi}{5}\right)\right)^{2} + \sin^{2}\left(\frac{4\pi}{5}\right)}$$

$$= \sqrt{1 + 2\cos\left(\frac{4\pi}{5}\right) + \cos^{2}\left(\frac{4\pi}{5}\right) + \sin^{2}\left(\frac{4\pi}{5}\right)}$$

$$= \sqrt{1 + 2\cos\left(\frac{4\pi}{5}\right) + 1}$$

$$= \sqrt{2 + 2\cos\left(\frac{4\pi}{5}\right)}$$
Donc $BA_{2}^{2} = 2 + 2\cos\left(\frac{4\pi}{5}\right)$



2. c. Un logiciel de calcul formel affiche les résultats ci-dessous, que l'on pourra utiliser

sans justification : En déduire, grâce à ces résultats, que $BA_2 = BK$.

Calcul formel

$$cos(4 \cdot pi/5) \qquad \frac{1}{4} \cdot (-\sqrt{5} - 1)$$

$$sqrt((3-sqrt(5))/2) \qquad \frac{1}{2} \cdot (\sqrt{5} - 1)$$

. « sqrt »signifie « racine carrée »

On sait d'après 2.b que
$$BA_2^2 = 2 - 2\cos\left(\frac{4\pi}{5}\right)$$
 donc $BA_2 = \sqrt{2 + 2\cos\left(\frac{4\pi}{5}\right)}$

D'après le logiciel de calcul formel on a :
$$\cos\left(\frac{4\pi}{5}\right) = \frac{1}{4}\left(-\sqrt{5} - 1\right)$$
.
Ainsi $2 + 2\cos\left(\frac{4\pi}{5}\right) = 2 + 2\left(\frac{1}{4}\left(-\sqrt{5} - 1\right) = 2 - \frac{1}{2}\left(\sqrt{5} + 1\right) = \frac{3}{2} - \frac{1}{2}\sqrt{5}$

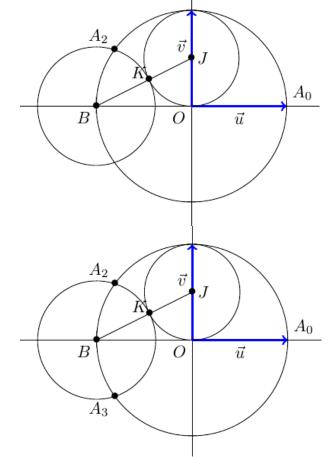
Et d'après les résultats du logiciel de calcul formel on a :
$$\sqrt{\frac{3}{2} - \frac{1}{2}\sqrt{5}} = \frac{1}{2}(\sqrt{5} - 1)$$

Ce qui prouve que
$$BA_2 = \frac{1}{2}(\sqrt{5} - 1)$$
. Or d'après 1. $BK = \frac{\sqrt{5} - 1}{2}$ ce qui prouve que $BA_2 = BK$.

3. Dans le repère $(0, \vec{u}, \vec{v})$ donné en annexe, construire à la règle et au compas un pentagone régulier. N'utiliser ni le rapporteur ni les graduations de la règle et laisser apparents les traits de construction.

 A_2 appartient au cercle de centre 0 et de rayon 1.

D'autre part on a démontré au 2.c. que $BA_2 = BK$. Donc A_2 appartient au cercle de centre B et de rayon BK.



$$(\overrightarrow{OA_0}; \overrightarrow{OA_3}) = \frac{6\pi}{5} (2\pi) \text{ donc}$$

 $(\overrightarrow{OA_0}; \overrightarrow{OA_3}) = -\frac{4\pi}{5} (2\pi).$

Ainsi A_3 est le symétrique de A_2 par rapport à l'axe des abscisses.

Le pentagone $A_0A_1A_2A_3A_4$ est régulier donc $A_2A_3=A_3A_4$ et $A_2A_3=A_2A_1$, il suffit de reporter la longueur A_2A_3 :

