

Bac S 2016 Polynésie

EXERCICE 2 3 points

Commun à tous les candidats

Soit u la suite définie par $u_0=2$ et, pour tout entier naturel , par

$$u_{n+1} = 2u_n + 2n^2 - n$$

On considère également la suite v définie, pour tout entier naturel , par

$$v_n = u_n + 2n^2 + 3n + 5$$

1. Voici un extrait de feuille de tableur.

	Α	В	С
1	n	и	V
2	0	2	7
3	1	4	14
4	2	9	28
5	3	24	56
6	4	63	
7			
8			
9			
10			
11			

Quelles formules a-t-on écrites dans les cellules C2 et B3 et copiées vers le bas pour afficher les termes des suites u et v?

2. Déterminer, en justifiant, une expression de v_n et de u_n en fonction de n uniquement.

Bac S 2016 Polynésie

CORRECTION

EXERCICE 2 3 points

Commun à tous les candidats

Soit u la suite définie par $u_0=2$ et, pour tout entier naturel , par

$$u_{n+1}=2u_n+2n^2-n$$

On considère également la suite v définie, pour tout entier naturel , par

$$v_n = u_n + 2n^2 + 3n + 5$$

1. Voici un extrait de feuille de tableur.

	Α	В	С
1	n	u	V
2	0	2	7
3	1	4	14
4	2	9	28
5	3	24	56
6	4	63	
7			
8			
9			
10			
4.4			

Quelles formules a-t-on écrites dans les cellules C2 et B3 et copiées vers le bas pour afficher les termes des suites u et v ?

On doit entrer dans la cellule $C2 := B2 + 2*A2^2 + 3*A2 + 5$.

Et dans la cellule $B3 := 2*B2+2*A2^2-A2$.

2. Déterminer, en justifiant, une expression de v_n et de u_n en fonction de n uniquement.

On peut conjecturer que pour tout $n \in \mathbb{N}$, $v_n = 7 \times 2^n$ et donc $u_n = 7 \times 2^n - (2n^2 + 3n + 5)$ soit $u_n = 7 \times 2^n - 2n^2 - 3n - 5$.

Montrons par récurrence sur $n \in \mathbb{N}$ que $u_n = 7 \times 2^n - 2n^2 - 3n - 5$:

Initialisation: Montrons que la propriété est vraie au rang 0:

 $7 \times 2^{0} - 2 \times 0^{2} - 3 \times 0 - 5 = 7 - 5 = 2$, de plus $u_{0} = 2$ la propriété est donc vraie au rang 0.

Hérédité : Supposons que pour $n \in \mathbb{N}$ fixé la propriété est vraie au rang n, c'est-à-dire :

 $u_n=7\times 2^n-2n^2-3n-5$ et montrons que la propriété est vraie au rang n+1, c'est-à-dire montrons que $u_{n+1}=7\times 2^{n+1}-2(n+1)^2-3(n+1)-5$:

Bac S 2016 Polynésie

D'autre part
$$u_{n+1}=2u_n+2n^2-n$$
 d'après l'énoncé
$$=2(7\times 2^n-2n^2-3n-5)+2n^2-n$$
 d'après l'hypothèse de récurrence.
$$=7\times 2^{n+1}-4n^2-6n-10+2n^2-n\\ =7\times 2^{n+1}-2n^2-7n-10$$

D'autre part on a :

$$7 \times 2^{n+1} - 2(n+1)^2 - 3(n+1) - 5 = 7 \times 2^{n+1} - 2(n^2 + 2n + 1) - 3n - 3 - 5$$

$$= 7 \times 2^{n+1} - 2n^2 - 4n - 2 - 3n - 8$$

$$= 7 \times 2^{n+1} - 2n^2 - 7n - 10$$

On a donc prouvé que la proposition est vraie au rang n + 1.

Conclusion: D'après le principe de récurrence, on a : pour tout $n \in \mathbb{N}$ $u_n = 7 \times 2^n - 2n^2 - 3n - 5$.

On en déduit que pour tout $n \in \mathbb{N}$ $v_n = u_n + 2n^2 + 3n + 5 = 7 \times 2^n - 2n^2 - 3n - 5 + 2n^2 + 3n + 5$ soit pour tout $n \in \mathbb{N}$ $v_n = 7 \times 2^n$.

