[image: TI Logo] 10 Minutes of Code - Python	 	UNIT 3: SKILL BUILDER 1
 TI-NSPIRE™ CX II TECHNOLOGY		TEACHER NOTES
	 Unit 3: Conditions, if and while
	Skill Builder 1: Collatz

	In this lesson, you will ‘branch’ out into the world of conditional programming. You will also investigate an as yet unproven conjecture.
	Objectives:

	
	· Learn the relational and logical operators
· Learn the integer operators (% and //)
· Write programs using if statements and while loops

	Choices, choices, choices. Our life is one long series of decisions: Are you hungry? What to eat? Is it cold? What to wear? Are we there yet? This decision-making process in programming is handled with if statements and while loops, which both depend on conditions. Examples of if and while in action are seen in in this image.
A condition is an expression that results in the value True or False:
 X > Y A+B <= C Qty > 0 5 != 3
 are all examples of conditions. (does not equal)
A condition includes one or more of these relational operators:
 == > < != >= <=
Compound conditions are made using the logical operators:
 and or not
Conditions are used in if structures and while loops.
Caution: Remember to use == when writing a condition, not =. Using the wrong symbol will result in a syntax error. if x==5:, not if x=5:. Using the ctrl+= menu can help.
This lesson introduces you to these powerful programming tools.
	[image:]

	Teacher Tip: Tricky: Using == for equality and != for ‘does not equal’. This lesson introduces two new Python arithmetic operators: % and //.
a % b gives the integer remainder when a is divided by b
a // b gives the integer quotient of a divided by b and is equivalent to int(a/b)

	1. The Collatz Conjecture
 Algorithm: Take a positive integer: if it is even, divide it by 2,
 otherwise multiply it by 3 and add 1.
 Repeat with the result.
 What happens to the sequence?
 Begin with a blank Python file (we called it Collatz).
 Input an integer to the variable num using the statement:
 num = int(input("Enter a positive integer: "))
 int(is found on menu > Built-ins > Type.
 input(is found on menu > Built-ins > I/O.
	[image:]

	2. if statements come in three flavors: if.., if..else.., and if..elif..else... They are all found on menu > Built-ins > Control. Note that there is no ‘then’ in Python.
(They are on the ‘Control’ menu because these statements control the flow of your program.)
 If.. Use when there is no ‘otherwise’ action.

 if..else.. Use when there are exactly two alternative actions
 for True and False.
 (We will use this one soon.)

 if..elif..else.. Use these when there are three or more actions
 to be taken based on several conditions.
 elif is short for ‘else if…’ and requires a condition
 like if.
 You can add as many elifs as your algorithm requires.
 (This one is used in the Application for this unit.)

	[image:]

	Teacher Tip: Notice the colon(:) at the end of the if,elif and else. These are required and indicate that what follows are the actions taken when the condition is True or False. The BooleanExpr and each indented ‘block’ will be replaced with your actions.
else: does not take a condition.
else: and elif: are also available as “standalones’ on this menu but they must be used in conjunction with an if..

True and False (yes, they are Capitalized) are Python reserved words. You could write while True: to create an infinite loop. To break (stop) a program that it stuck in an infinite loop:
 Handheld: ON Windows: [F12] or Fn+[F12] Mac: [F5]

	3. Insert the if..else statement from menu > Built-ins > Control.
Press tab or right-arrow to move from prompt to prompt.

	
[image:]

		Teacher Tip: If the statement is typed in by hand, then the inline prompts (BooleanExpr, block) will not appear.
Press tab to move from prompt to prompt.

	4. The condition (BooleanExpr) is…
 if num % 2 == 0:
% is called ‘mod’ and is the mathematical operator (like +, - *, and /) that gives the remainder when the first number is divided by the second. ‘mod’ is short for ‘modulus’.
% is found on the punctuation key (next to the letter ‘G’).
If the remainder when num is divided by 2 is zero, then the num is even.
Note the two equal signs!
For == just press the = key twice. All the relational operators are on ctrl+=.

	[image:]

	Teacher Tip: Notice that there’s no ‘then’ in Python. Waste of space!

	5. The if : (when the number is even)
 block (the top one)
becomes:
 num = num // 2
 // (two division signs) is integer division (no decimal and truncates to just the whole number). If you use / you will see a decimal point even if the number is an integer. Just use two / signs (the ÷ key).
	
[image:]

	6. The else: (when the number is odd)
 block is:
 num = 3 * num + 1
	[image:]

	7. After the if..else: statement block, backspace to the beginning of a line (erase the indent characters) and write the print statement:
 print(num)
	[image:]

	8. Running the program:
Press ctrl+R to run the program. Enter a positive integer. An answer appears.
Press ctrl+R again and this time enter the last answer.
Repeat running the program, each time entering the previous answer.

Next you will add a loop to the program so that the process runs repeatedly by itself instead of having to run the program over and over…

	[image:]

	Teacher Tip: What happens? The number eventually becomes 1 where the pattern will just repeat 1,4,2,1,4,2,1…

	9. Place your cursor right below the input statement and above the if statement as shown in this image. (Do not type: ‘<<< cursor here’)
	[image:]

	10. On this blank line add the while statement found on
 menu > Built-ins > Control.
 You will see
 while BooleanExpr:
 block
 pasted into your program.
	[image:]

	Teacher Tip: The ‘block’ is indented but the actual block is already in the program: the if structure and the print statement. The next section shows how to indent an entire section of text.

	11. Erase the entire line that says ‘block’.
Select the entire if structure and print statement using shift+down arrow. Press tab to indent all these lines two spaces to become the while block.
	[image:]

	Teacher Tip: Another option for pressing tab is menu > Edit > Indent. Dedent is the opposite of indent and its shortcut is shift+tab.

	12. Now write the condition by replacing BooleanExpression.
The Collatz Conjecture states that all sequences will eventually become 1.
As long as the number is greater than 1, continue processing; so write:

 while num > 1 :

Be sure to leave the colon (:) at the end of this line.
	[image:]

	13. Run the program. Enter 20 as the number. Follow the logic of the program: Odd numbers get larger and even numbers get smaller.
 20 is even 10
 10 is even 5
 5 is odd 16
 16 is even 8
 and so on…
 … and the program ends when the number reaches 1.

 Note that it only took one line of code to create a loop!

Can you find a number that causes the program to NEVER end? Try a large number. Notice how fast the numbers fly by! When the program ends you can scroll upward through the Shell history to examine the numbers.
	[image:]

	Teacher Tip: The Shell history is plain text and is not saved with the TI-Nspire document. If you want to keep some of the Shell history, select, copy, and paste it into a Notes app.
To clear the Shell history use menu > Tools > Clear History.
There is also a programming command to clear the Shell history (similar to a clear screen function).
The Collatz Conjecture (presented in 1937) is still unproven. Is there something special about the numbers 3, 1, and 2 in the algorithm? Try using different numbers.
One more option to add to the program is to count the number of steps to reach 1.

[bookmark: _GoBack]

[image:]

©2020 Texas Instruments Incorporated	1	education.ti.com
image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.jpeg

