
 10 MOC: Python Modules TI IMAGE: IMAGE TRANSFORMATIONS

 TI-NSPIRE™ CX II PYTHON

©2022 Texas Instruments Incorporated 1 education.ti.com

TI Image Transformations

After converting an image to grayscale in the first activity, let’s look at some transformational image processing that can

be done using the ti_image module. Transformations include effects such as flipping, mirroring and rotating the entire

image.

Introduction: In the “Getting Started…” activity you downloaded a

working TI-Nspire document found at Image_Processing_Activities.tns.

Make another copy of the startup code (pythonimage.py) in the

document to work on this project, too.

1. To work with your own image, after inserting an image into your TI-

Nspire document (on a Notes app), it will appear like this.

Name the image by right-clicking (press [ctrl]-[menu] on the handheld)

the image and selecting ‘Name Image’. Use that name in your Python

programs.

2. To flip an image (vertically) or mirror an image (horizontally), get the

value of each pixel and place it in a new (opposite) position in a new

image. Let’s flip an image first.

Use the ‘generic’ image processing code provided in the document to

load and show the image.

Use the same nested for loops for the rows and columns.

3. ‘Flip’ means to transfer pixels between top and bottom. The top row is

row 0 and the bottom row is row (h-1). Python counting always starts

with 0.

In general, row j from the top of the old image moves to row (h-1) - j

from the bottom in the new image.

https://education.ti.com/-/media/ti/files/resources/ti-codes/python/nspire/us/python-image_processing_activities.tns?rev=d20aa7ac-49a0-4989-ad77-c1af16f9e175&la=en&hash=29E417931D617BDA37A06A8906BE15561D4C6A54

 10 MOC: Python Modules TI IMAGE: IMAGE TRANSFORMATIONS

 TI-NSPIRE™ CX II PYTHON

©2022 Texas Instruments Incorporated 2 education.ti.com

4. We can perform this transformation in just one or two statements: get the

value of pixel (i, j) from the original image and place it in position

(i, (h-1) – j) in the new image:

 c = img.get_pixel(i, j)

 img2.set_pixel(i, (h - 1) - j, c)

These two statements can be combined into just one statement:

 img2.set_pixel(i, (h-1)-j, img.get_pixel(i, j))

5. To mirror the original image (left <-> right), perform a similar operation

on the columns instead of the rows.

 To show both images at once just change the positions in

 img.show_image(,)

6. Challenge 1: Efficiency

Perform the transformation (flip or mirror) using only one image

variable, not two. Note that this does require modifying the original

image, but only within the program, not the actual image in the Notes

app of the document. Would the program perform faster?

 10 MOC: Python Modules TI IMAGE: IMAGE TRANSFORMATIONS

 TI-NSPIRE™ CX II PYTHON

©2022 Texas Instruments Incorporated 3 education.ti.com

7. Challenge 2: Rotate

Use the same image processing technique to rotate the image.

Hint: row i from the top of the original image moves to column i (from

the left) in the new image working from bottom to top.

 row col row col

 Pixel (i, j)  (j, (h – 1) - i).

This will rotate the image 90 degrees counter-clockwise. You can also

rotate 180 degrees (that’s not the same as flipping!) or 90 degrees

clockwise.

 10 MOC: Python Modules TI IMAGE: IMAGE TRANSFORMATIONS

 TI-NSPIRE™ CX II PYTHON

©2022 Texas Instruments Incorporated 4 education.ti.com

Teacher Tip: About the Challenges.

Challenge 1: To flip (top to bottom) or mirror (left to right) using only one image variable, process just one half of the

image, swapping pixels in the first half with the coresponding pixel in the other half. It requires temporarily storing the

color of the first pixel.

Sample code:

mirror with only one image var...

W, H = get_screen_dim()

img=load_image("python0")

w,h=img.w, img.h

for j in range(h):

 for i in range(w//2):

 temp=img.get_pixel(i, j)

 img.set_pixel(i, j, img.get_pixel(w-1-i,j))

 img.set_pixel(w-1-i, j, temp)

img.show_image((W-w)/2, (H-h)/2)

The program will not run significantly faster. Most of the processing time is used by the get_ and set_ functions. Actual

performance will vary depending on your hardware and software. To test speed performance of any code on your system,

add a time statement supplied with ti_system:

Mirror...

from ti_system import *

img2=new_image(w,h,(0,0,0))

t0=get_time_ms() # found on [menu] > More Modules > ti_system

for j in range(h):

 for i in range(w):

 img2.set_pixel(w-1-i,j,img.get_pixel(i,j))

print(get_time_ms() - t0)

Challenge 2: Rotations

 Sample code using the same nested for loops as the other transformations:

left 90...

 img2.set_pixel(j, (h-1)-i,img.get_pixel(i,j))

right 90...

(i, j)  ((h-1)-j, i)

left 180...

(i, j)  ((w-1)-i, (h-1)-j)

