
 10 Minutes of Code - Python UNIT 7: APPLICATION
 TI-NSPIRE™ CX II WITH THE TI-INNOVATOR™ HUB AND TI-RGB ARRAY™ TEACHER NOTES

©2020 Texas Instruments Incorporated 1 education.ti.com

Unit 7: The TI-RGB Array Application: Smart Lights

In this application, you will control the number of LEDs lit on the
TI-RGB Array using the TI-Innovator Hub’s brightness sensor.

Objectives:
• Use the brightness sensor to control the TI-RGB

Array
• Adjust the brightness range to suit the TI-RGB

Array
• Make sure that all 16 LEDs are impacted by the

brightness

Smart Lights

As the room darkens, the lights in the room get brighter. Imagine a ‘smart home’ with
no light switches! Write a program that monitors the brightness and turns on more or
less LEDs, as necessary.

Teacher Tip: One of the challenges in this project is getting ALL the LEDs to react to some
brightness value, including the end conditions: all on and all off. Your students may have to
adjust the brightness.range() values to suit your lighting conditions. A smartphone flashlight
will be helpful to control brightness.

1. As usual, begin this Python Hub Project using the rgb_array() constructor and the
while loop to terminate the program with esc.

 cb = rgb_array()
 while get_key() != ”esc”:

2. Before the while loop, set the brightness.range() to match the number of LEDs
on the TI-RGB Array board that could be lit: 0 to 16.

Press menu > TI Hub > Hub Built-in Devices > Brightness Input >
range(min,max) for the statement:

 brightness.range(0,16)
 Use 0,16 because this is the range of the number of LEDs to light up on the board.

 The maximum value the sensor will produce is 16. Is the minimum 0?

Teacher Tip: A value of 0 is hard to achieve on the sensor. The next step converts the
brightness value to an integer.

 10 Minutes of Code - Python UNIT 7: APPLICATION
 TI-NSPIRE™ CX II WITH THE TI-INNOVATOR™ HUB AND TI-RGB ARRAY™ TEACHER NOTES

©2020 Texas Instruments Incorporated 2 education.ti.com

3. In the while block, start by reading the brightness.measurement() and store the
value in a variable (bright).
 bright = brightness.measurement()
The function produces a floating-point number (float, decimal). Convert it to an
integer value using:
 bright = int(bright)
Or, combine the two statements into one operation:
 bright = int(brightness.measurement())

Teacher Tip: Clarity or efficiency? A matter of preference and experience!

4. To test your program: add text_at() statement found on menu > TI Hub >
Commands:
 text_at(7, str(bright), “left”)

Recall that you need str(bright) because the text_at() function requires a string
to display. You can either type str() or get it from menu > Built-ins > Type.

Run the program to ensure that all seventeen values (0…16) do appear. If not,
then adjust the range() so that they do. Try using an artificial light source such as
a flashlight or the ‘flashlight’ feature on a smartphone.

Teacher Tip: Varying lighting conditions can make it difficult to achieve perfection but, with
practice, students will figure things out.

5. Since 0 is the darkest value and 16 is the brightest, we want the number of LEDs
lit to be the opposite: when bright = 0, there should be 16 LEDs lit and when
bright is 16, there should be 0 LEDs lit.
Write an expression for lites in terms of bright.
 lites = ? ? ?

6. It’s possible that all LEDs should be off:
 if lites == 0:
 cb.all_off()
 else:

 10 Minutes of Code - Python UNIT 7: APPLICATION
 TI-NSPIRE™ CX II WITH THE TI-INNOVATOR™ HUB AND TI-RGB ARRAY™ TEACHER NOTES

©2020 Texas Instruments Incorporated 3 education.ti.com

7. We want all the LEDs to be affected by the brightness so we will use a for loop to
control the state of every LED every time. The lites variable is a deciding factor
when turning a LED on or off:
 for i in range(1,17):

(Remember that the value 17 is not processed by the loop so i takes on the
values from 1 to 16 representing the 16 LEDs.)

8. Complete the program by adding an if…else… statement to tell the TI-Innovator
Hub which LEDs are on and which ones are off.

Hint: If lites is 1, then you want to turn on LED 0. When lites is 16, you want to
turn on all LEDs (#0 to #15). Use the color (255,255,255) to get a bright white
light.

Remember to turn all the LEDs off at the end of the program.

(demoAPP.gif)

Teacher Tip: The complete program:
cb = rgb_arry()
brightness.range (0,16)
while get_key() !=”esc”:
 bright = brightness.measurement()
 bright = int(bright)
 text_at (7,str(bright),”left”)
 lites = 16 – bright
 if lites == 0:
 cb.all_off()
 else
 for i in range (1.17) :
 if i <= lites:
 cb.set(i-1,255,255,255)

 else:

 cb.set(i-1,0,0,0)
 cb.all_off()

Tip: Connect a power supply to the TI-Innovator Hub and use cb==rgb_array (“as lamp”) for
much brighter LEDs.

For a greater challenge: Instead of each LED being lit or not, have the program gradually
brighten or darken the next LED as needed. Use a float for bright and lites and use the
decimal part to light up an LED partially.

