
 10 Minutes of Code: Python UNIT 5: SKILL BUILDER 3

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 1 education.ti.com

Unit 5: The TI Modules Skill Builder 3: Graphing

In this lesson, you will use the ti_plotlib to graph a
function. That is, you do not need to leave the Python
world to create a graph of a function.

Objectives:
• Create a connected graph of plotted points

Teacher Tip: Graphing a function in Python requires a bit of coding, but there are advantages. The bigest is the 100-
element limit on data transfers. Wthin Python, you can have a large number of elements in two lists, and you can create
graphical plots of that data right in Python. You can also “connect the dots” as explained in this lesson.

1. Let’s take a look at the Plotting (x,y) & Text template when starting a
New program. It gives not only the necessary import statement, but also
a whole demo program.

Notice line 3 of the program contains two list assignments but there’s no
data in the lists.
 x = []; y = []

In order for the program to run, you need to supply some data in these
lists. Enter some numbers inside the brackets such as:
 x = [1, 2, 3]; y = [1, 2, 3]

You can use any numbers, but the lists must have the same number of
elements.

When using the <Setup> functions of ti_plotlib (.cls(), .window(),
.labels(), .grid() and .axes()) the order in which these statements are
written matters so they are inserted automatically in the code in the
proper order for demonstration.

After entering data in the lists x and y the program will run.

The last statement,

 plt.show_plot()

causes the plot to remain on the screen until the [clear] key is pressed.
Without it, the Shell prompt appears. (Test this by placing a comment
sign in front of the statement, and run the program again.)

 10 Minutes of Code: Python UNIT 5: SKILL BUILDER 3

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 2 education.ti.com

2. Run the program to see the graph. Not quite what you are expecting?
The points are plotted but they are not connected. Let’s connect the
dots.

3. Press [clear] and return to the <Editor>. On the next-to-last line,

change the word .scatter to .plot by deleting “scatter” and typing “plot.”
 plt.scatter(x, y, ”o”) becomes plt.plot(x, y, ”o”)

The plt.plot(xlist, ylist, ”mark”) function is on the menu right below
.scatter, but it is simpler to just edit the line rather than replace it.

There is also a function to plt.plot() a single point but our x and y are
lists, not numbers.

4. Run the program again and see that the three points are now connected
with segments.

Teacher Tip: The statement x=[]; y=[] illustrates the “Python way” to place two statements on one line
— use a semicolon as a separator. It is used in this demo program to ensure that all the code fits into one
screen.

The Python demo program GRAPH included in the 5.6 OS release graphs two functions, one with a curve
and one with a scatter plot.

 10 Minutes of Code: Python UNIT 5: SKILL BUILDER 3

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 3 education.ti.com

This lesson graphs a function and shows the red “curve” method step by step.

5. Write a program using ti_plotlib that will graph any defined function.

Start a new program, AGRAPH (so that it appears near the top of your
Files list) and use the <Type> Plotting (x,y) & Text.

6. Change the word “scatter” to “plot” on the next-to-last line as before.

7. Below the import statement define a function to graph. This will make

it easy to change the function later to graph any function.
We moved the rest of the code off the screen to be less distracting.

Get both def and return from <Fns…>
Give the function a name (we use f) and an argument (we use x)
After return, write the function expression (we use x**2):

def f(x):
 ♦♦return x**2

 Remember to dedent to the left edge of the screen.

 10 Minutes of Code: Python UNIT 5: SKILL BUILDER 3

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 4 education.ti.com

Teacher Tip: You could get more math-y and write:

def f(x):
 ♦♦ y = x**2
 ♦♦ return y

8. Below the x=[]; y=[] statements add some blank lines. Here’s where
you will build the two lists one element at a time.

9. Write a loop structure that starts at xmin and goes up to xmax in small

steps. Since these steps might not be integers a for loop is not
appropriate because the for loop only allows integer arguments. Use a
while loop:
 a = plt.xmin
 while a <= plt.xmax:
 ♦♦
xmin and xmax are found on <Fns…> Modul ti_plotlib Properties

10. In the loop body build the two lists x and y using the .append() function.
♦♦ x.append(a)
♦♦ y.append(f(a))

 Recall that .append() is found on <Fns…> List.

11. Now add a value to the variable a so that it eventually increases to
xmax. Let’s start with
 ♦♦a += 1
and see how it looks. You can come back and edit this increment value
later to see its effect on the graph.

Recall that a += 1 is the same as a = a + 1.

 10 Minutes of Code: Python UNIT 5: SKILL BUILDER 3

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 5 education.ti.com

12. Run the program. You will see an error message, the most important of
which is the last statement: Invalid grid scale value. This error occurs
because auto_window() looks at the lists x and y and sets up a window
that fits all the data on the screen, but the .grid() function cannot make
that many grid lines. There are several ways to fix the problem. Try it
yourself before looking at the next step.

13. Some ways to fix the error:
o Eliminate the .grid() (make it a #comment)
o Change the .grid() values to allow the grid to be drawn
o Set the window and grid by yourself rather than using

auto_window

We chose to adjust the .grid() values. Can you spot the change?

14. Run the program. Do you see the graph shown here? Something
similar? If so, congratulations! Share your success with a friend. You
have graphed a function! Now for the extensions.

Notes:
a) If your graph does not appear or quickly disappears be sure that you

have the plt.show_plot() function at the end of your program. This
statement pauses the program until the [clear] key is pressed.

b) If your program is stuck in an “infinite loop” press [on] to break the

program. Check the while loop body to be sure that the variable a is
being changed. We use a+=1 at the bottom of the loop. You can use
other values than 1 but eventually the variable a must eventually
exceed xmax so that the loop can end.

 10 Minutes of Code: Python UNIT 5: SKILL BUILDER 3

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 6 education.ti.com

15. Extension. There are a lot of ways to embellish the graph of a function:
o Add Color
o Adjust dot spacing (change the increment)
o Adjust dot size (o, x, + and . are the four dot styles)
o Change line thickness (pen)
o Use custom window settings
o Change the function
o Graph multiple functions on the same screen

Use the ti_plotlib module features to enrich the appearance of your
graph. A sample is shown here. Once you have the core code,
enhancements are easy.

Note: For trigonometric, log, and other special functions, you have to
use

 from math import *

The trig keys ([sin] [cos] [tan]) all invoke the Trig menu and [log], [ln],
[ex], and [10x] bring up the Python functions as well.

Teacher Tip: The code for the final image. Changes from the lesson are bold and
#commented:

import ti_plotlib as plt

def f(x):

 return 3*x**3 - 10*x**2 + 40 #note function change

x = []; y = []

a = plt.xmin

while a <= plt.xmax:

 x.append(a)

 y.append(f(a))

 a+=1

plt.cls()

plt.grid(1,10,"dot") #note grid change

plt.window(-10,10,-70,70) #note window change

plt.axes("on")

plt.color(255,0,0) #note color

plt.pen("medium","solid") #note pen

plt.plot(x, y, ‘.’) #note dot size

plt.show_plot()

