[image: TI Logo] 10 Minutes of Code: Python	UNIT 1: SKILL BUILDER 2
 TI-84 PLUS CE PYTHON		STUDENT ACTIVITY
	Unit 1: Getting Started With Python
	Skill Builder 2: Editing, Variables, Expressions

	In this lesson, you will work in the Python Editor, investigate the menus, use some mathematics operations, experience color highlighting, note some special keypad changes and work with different data types.

	Objectives:

	
	· Explore the menus
· Use some operators
· Learn about the basic types of variables
· Use the assignment statement (=)
· Experience the keyboard differences in the Editor

	1. Start the Python App from the [prgm] key. You see the Python FILE MANAGER. The image shown here illustrates what happens as you write more programs. GRAPH, HELLO and LINREGR are in the list but there are lots of other files, too. Your screen will surely resemble this someday. #coding goals

 If you are already using the Python App, select <Files>.

	
[image:]

	2. Select <New> on the menu bar to begin a new Python program. Before entering the Editor, you must provide a name for this file. It must conform to the rules posted on the screen. The cursor indicates that you are now in uppercase alpha mode for entering the name of the program. At the end of the filename press [enter] or select [Ok]. We will name the new program FIRST, but you can use any valid name.

Note: It must be all uppercase because the TI-84 Plus CE Python requires it for all identifiers and variables. The program is stored as an AppVar.
	[image:]

	3. In the Editor, write (type) the following statements:
 X = 4 + 5
 y = 3*X + 7
 z = 5*X - 2*y
 print(X, y, z)
Press [X,T,,n] for the Capital X.
Press [alpha] then the appropriate key for the other letters.
Use the [stop ->] key for “=.”
Comma (,) is above the “7” key on the keypad.
You must use a multiplication sign: 3x causes an error.
To type print, turn on alpha-lock ([2nd] [alpha]) and turn it off when done.
Notice that none of these statements produce any output yet. You are just editing a program.

Uppercase X is produced by pressing [X,T,,n]. For lowercase x use [alpha] [sto ->] or [alpha] [X,T,,n]. You can use either uppercase X or lowercase x but you must be consistent in your program because Python is case sensitive. X and x are different variables.
	
[image:]

	4. About editing. The cursor is always in “insert” mode. [del] deletes the character to the left of the cursor (backspace). Pressing [enter] at any time forces a new line. The [clear] key erases the entire line and on the <Tools> menu there is an option to “Undo Clear.” This can be frustrating and is very important to remember!

Pressing [alpha] switches among numeric, lowercase and uppercase. [2nd] [alpha] turns on/off alpha-lock. While in alpha-lock you can use [alpha] to switch between lowercase and uppercase. Press [2nd] [alpha] again to turn alpha-lock off. Pay attention to the cursor symbol and the status line at the top of the screen.

An alternative to the keypad is the on-screen text selector: Selecting the <a A #> menu opens the text-selection window (see image). Use the arrow keys and press [enter] or select <Select> to build your text at the top of the screen. Select <Paste> to add it to your code at the current cursor position.

	

[image:]

	5. Assignment and expressions
· The equals sign (=) is the assignment operator; it stores the result of the expression on the right to the variable on the left
· An expression is a combination of numbers, variables and operators such as 5*x-2*y that is evaluated to produce a result
· Syntax is the grammatical structure of a language; the order of the pieces of a statement matters

Writing 4+5 = X causes a SyntaxError because the order of the statement is backwards. SyntaxErrors are common. It just means “check your grammar and spelling, dude!”

	
[image:]

	6.
Select <Run> to run the program. In the Shell you see the output of the print() statement only:
 9 34 -23
indicates that, as a result of the previous statements, x is 9, y is 34, and z is -23. The other statements do their work behind the scenes.

Note: Improving the output of a program is one of the most engaging parts of programming.

	
[image:]

	7. Errors. Programming errors come in three flavors:
· Interpreter errors are usually reported as a “SyntaxError” (or similar) before execution begins
· Runtime errors are detected by the computer during execution (like “division by zero” as seen in the image which was caused by the statement X=3/0)
· The third kind of error is in the head of the programmer, for example, entering a valid, but incorrect expression (like misuse of order of operations) or logical structure (like using “and” where “or” is required); example: 5+3/7+1 vs. (5+3)/(7+1) (order of operations); both are evaluated properly but give different results; what did the programmer intend?
	
[image:]

	8. Return to the <Editor> containing the three expressions and the print() statement. To improve the appearance of the output, add a “message” (such as “x=”) to each of the values:

 print(“x=”,x,” y=”,y,” z=”,z)

There are some spaces in front of y= and z= inside the quotes. Spaces are ignored by the interpreter, but if they are inside the quotes they will be printed as written.

Be very careful when entering this statement: The positions of the commas and the quotes is crucial. If any symbol is in the wrong position, you will see a “SyntaxError” message when you select <Run>. You will have to find and correct the error, which is usually near or right above the cursor.
	[image:]

	9. When you run this program, you now see:

 x= 9 y= 34 z= -23

Note: If you get an error message or the wrong output, go back and edit the statement.

	
[image:]

[bookmark: _GoBack]
©2021 Texas Instruments Incorporated	2	education.ti.com
image2.png
DICEZ
GRAPH
HAPPYNUM

MHELLO
HENON
HUB
HUBB.
ISPRINE
KOCH
LIGHTL
LINREGR

Run | E4it

Shell Hanage]

image3.png
Nans

ALloved
- Up to 8 characters
- First characterif-z
- Remaining characters:A-2 0-9 _

Optional

Too Tvr (3

image4.png
print(X,y,2)

Fre. Ta A #Tools] Run [Files

image5.png
A
> 5%

&
Esc | Boofl | [BelectPaste

image6.png
>35> 445X
Traceback (most recent call last

)i

File cstdin
dule>
SyntasError: can't assign to exp
ression
>>> |

", line 1, in <no

Fre. Ta A #]Tools Editor Files

image7.png
>>> t Shell Reinitialized
55> # Running FIRST

53> from FIRST import x
5 34 -23

55> |

Fre. Ta A #]Tools Editor Files

image8.png
° 0
>5> from FIRST import %
9 34 -23
Traceback (most recent call last

“File "<stdin3", line 1, in <no
dule>

File "FIRST.py", Line 8, in <n
odule>
ZeraDivisionError: division by z
55 |

Frs. Ta A #]Tools Editor Files

image9.png
>>> t Shell Reinitialized
55> # Running FIRST
55> from FIRST import x

555 |

Trae

=9 y= 3¢ z= -23

= A #|Tools Editor Files

image10.jpeg

