

[image: TI Logo] 10 Minutes of Code – Python	 UNIT 6: SKILL BUILDER 2
 TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ ROVER 	STUDENT ACTIVITY
	Unit 6: Rover’s Coordinates
	Skill Builder 2: The Distance Formula

	In this lesson, you will use the distance formula from coordinate Geometry to calculate the distance between two points and compare the Rover’s measured distance against the calculated distance.
**You will need a meter stick or metric tape measure for this lesson.

	Objectives:

	
	· Move to two different points
· Use a marker to draw the segment
· Use a function to compute the distance between two points and display the distance
· Measure the distance between the points
· Compute the error in the measurement versus the computation

	Recall the “Distance Formula”, which is based on the Pythagorean Theorem:
 [image:]
Based on the image to the right, this becomes the Python statement:
 d = sqrt((6 - 2)**2 + (4 - 1)**2)
This evaluates to: d = 5
Can you find a 3-4-5 right triangle in the image?

	
[image:]

	1. Start a new Python Rover Coding project.
Define a function called dist which takes four arguments (two pairs of coordinates) and will return the distance between the two points.
The def function() template is found on <Fns…>
The body of the function consists of one calculation:
 [image:]
and the return statement: return d
return is also found on <Fns…>
Make sure these two statements are indented the same amount.
Note: there are two options for evaluating a square root:
 ()**0.5
 sqrt() (must use from math import * for this function)
	
[image:]

	2. Below the function (after the return statement), begin the main program. Be sure your code is no longer indented. Write four input() statements (using copy and paste) to enter the coordinates of the two points. Create simple prompts for the inputs and use the float() function to convert the input result from a string to a decimal value. Only one of these four statements is shown to the right. We are using the variable a to store the first x-coordinate. Use b, c, and d for the other three coordinates.

	
[image:]

	3. After the four input() statements, make Rover drive to the first point:
 rv.to_xy(a,b)
Pause there while you insert a marker in the Rover’s marker holder to draw a line segment. Then continue driving to the second point. A good pause technique is:
 print(“insert marker”)
 disp_wait()
When you run the program and see ‘insert marker’ wait for Rover to stop and insert a marker into Rover and then press the [clear] key on the calculator.
[bookmark: _GoBack]
	
[image:]

	4.
Have Rover drive to the second point (making a line segment) and then use the dist function to determine the calculated distance between the two points:
 cd = dist(a, b, c, d)
we use the variable cd for ‘calculated distance’

Notice that the letter ‘d’ is used as a variable in two different ways: in the main program, it represents the second point’s y-coordinate but in the dist() function it is used to store and return the value of the calculated distance. These two variables do not conflict with each other because they have a different ‘scope’: the part of the program where the variable ‘lives’ (or: is valid).
	
[image:]

	5. Use a ruler or tape measure to determine the length of the segment that Rover made.
Add an input() statement to your program so that you can enter the measured distance, md.

	
[image:]

	6. Add two print() statements to display the two distance values.
How does the measured distance compare to the calculated distance?
	
[image:]

	7. Calculate the percent error using the formula
 (measured - calculated) / calculated * 100
 and print the error.

	
[image:]

©2021 Texas Instruments Incorporated	1	education.ti.com
image1.png
d= (x2—x]) 2+(y2—y7)2

image2.png
7

6,4)

2,1 10

image3.png
4 Rover
from time import ¥
from ti_systen inport &
inport 1i_rover as ru
def dist(x1,v1,x2,92):
=
return d

Freo Ta A #]Tools] Run

Files

image4.png
4 Rover
from time import ¥
from ti_systen inport &
inport 1i_rover as ru
def dist(x1,v1,x2,92):
=
return d

= Loat (input("x1= 7"))_

Freo Ta A #]Tools] Run

Files

image5.png
Loat(input("y2

ru. to_xy(a,b)
print{'insert mark:
disp_vait()

Fre. Ta A #Tools] Run [Files

image6.png
loat(input(
loat(input(
loat(input(
Toat(input(

rv. to_xy(a.b)
print{"insert narker!)
disp_vait()
u-to_xy(c,d)
cddist(a,b,c,d)

Fre. Ta A #Tools] Run [Files

image7.png
print{"insert narker!)
disp_vait()
ru. to_xy(e.d)

image8.png
rv. to_xy(a.b)
print{"insert narker!)
disp_vait()

u-to_xy(c,d)
cddist(a,b,c,
nd=f loat (inpui(

easured distano

od)
nd)

print
print("measured

Fre. Ta A #Tools] Run [Files

image9.png
disp_vait()
Pyt (ed)

print ("measured

md-cd) /cd€100
print(error= " e)

Fre. Ta A #Tools] Run [Files

image10.jpeg

