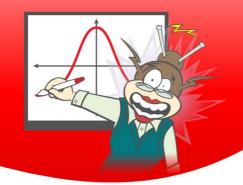
STUDENT REVISION SERIES



Vectors Part 2

Each of the questions included here can be solved using the TI-Nspire CX CAS.

Scan	the OR	code or us	a tha link	http://bit	ly/Vectors	Part2
ocan	וווע ער	code or us	e uie iiiik.	TILLD.//DIL.	IV/ VECTOIS	-ranz

the QR code or use the link: http://bit.ly/Vectors-Part2	
Question: 1.	
Evaluate the scalar product of $a = 5i - 3k$ in the direction of $b = 2i + j - 2k$.	E3 93 45
	- 55,9945
	- 533218
Question: 2.	
Express the vector $y = 3i + 6j - 2k$ as a sum of two vectors, one of which is paral	llel to the vector
w = 2i + 2j - k and one which is perpendicular to it.	
w = 2i + 2j - k and one which is perpendicular to it.	
Question: 3.	
The vector resolute of \underline{a} in the direction of \underline{b} is $5\underline{i} - 3\underline{j} + \underline{k}$ and the vector resolute	e of a perpendicular to b is
	~ 1 1 ~ ~ ~
$\mu \underline{i} + 2\underline{j} - 9\underline{k}$. Show that the value of μ is 3 and hence determine the vector \underline{a} .	

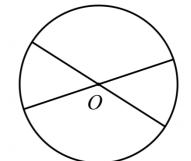
© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question: 5. If the vectors $p=\underline{i}-2\underline{j}$, $q=4\underline{i}+8\underline{k}$ and $r=\alpha\underline{i}-\underline{j}+5\underline{k}$ form a linearly dependent set of vectors, find the exact value of α .	Question: 4.
If the vectors $\ p=\dot{\iota}-2\dot{\jmath}$, $\ q=4\dot{\iota}+8\dot{k}$ and $\ r=\alpha\dot{\iota}-\dot{\jmath}+5\dot{k}$ form a linearly dependent set of vectors, find the exact value of α .	Determine if the vectors $\underline{a} = 3\underline{i} - \underline{j} + 5\underline{k}$, $\underline{b} = 2\underline{i} - 2\underline{j} + 2\underline{k}$ and $\underline{c} = 4\underline{i} + 3\underline{k} - 6\underline{k}$ are linearly independent.
If the vectors $\ p=\dot{\iota}-2\dot{\jmath}$, $\ q=4\dot{\iota}+8\dot{k}$ and $\ r=\alpha\dot{\iota}-\dot{\jmath}+5\dot{k}$ form a linearly dependent set of vectors, find the exact value of α .	
If the vectors $\ p=\dot{\iota}-2\dot{\jmath}$, $\ q=4\dot{\iota}+8\dot{k}$ and $\ r=\alpha\dot{\iota}-\dot{\jmath}+5\dot{k}$ form a linearly dependent set of vectors, find the exact value of α .	
If the vectors $p=\underline{i}-2\underline{j}$, $q=4\underline{i}+8\underline{k}$ and $r=\alpha\underline{i}-\underline{j}+5\underline{k}$ form a linearly dependent set of vectors, find the exact value of α .	
If the vectors $p=\underline{i}-2\underline{j}$, $q=4\underline{i}+8\underline{k}$ and $r=\alpha\underline{i}-\underline{j}+5\underline{k}$ form a linearly dependent set of vectors, find the exact value of α .	
If the vectors $p=\underline{i}-2\underline{j}$, $q=4\underline{i}+8\underline{k}$ and $r=\alpha\underline{i}-\underline{j}+5\underline{k}$ form a linearly dependent set of vectors, find the exact value of α .	
If the vectors $p=\underline{i}-2\underline{j}$, $q=4\underline{i}+8\underline{k}$ and $r=\alpha\underline{i}-\underline{j}+5\underline{k}$ form a linearly dependent set of vectors, find the exact value of α .	
If the vectors $p=\underline{i}-2\underline{j}$, $q=4\underline{i}+8\underline{k}$ and $r=\alpha\underline{i}-\underline{j}+5\underline{k}$ form a linearly dependent set of vectors, find the exact value of α .	
If the vectors $p=\underline{i}-2\underline{j}$, $q=4\underline{i}+8\underline{k}$ and $r=\alpha\underline{i}-\underline{j}+5\underline{k}$ form a linearly dependent set of vectors, find the exact value of α .	
If the vectors $p=\underline{i}-2\underline{j}$, $q=4\underline{i}+8\underline{k}$ and $r=\alpha\underline{i}-\underline{j}+5\underline{k}$ form a linearly dependent set of vectors, find the exact value of α .	
If the vectors $p=\underline{i}-2\underline{j}$, $q=4\underline{i}+8\underline{k}$ and $r=\alpha\underline{i}-\underline{j}+5\underline{k}$ form a linearly dependent set of vectors, find the exact value of α .	
If the vectors $p=\underline{i}-2\underline{j}$, $q=4\underline{i}+8\underline{k}$ and $r=\alpha\underline{i}-\underline{j}+5\underline{k}$ form a linearly dependent set of vectors, find the exact value of α .	
If the vectors $p=\underline{i}-2\underline{j}$, $q=4\underline{i}+8\underline{k}$ and $r=\alpha\underline{i}-\underline{j}+5\underline{k}$ form a linearly dependent set of vectors, find the exact value of α .	
value of $lpha$.	
	Question: 6.
The vectors $\underline{a} = 2\underline{i} - 3\underline{j} + \underline{k}$, $\underline{b} = 5\underline{i} + 4\underline{j} - 6\underline{k}$ and $\underline{c} = 4\underline{i} - 29\underline{j} + 19\underline{k}$ are linearly dependent. Write \underline{c} as a	The vectors $\underline{a}=2\underline{i}-3\underline{j}+\underline{k}$, $\underline{b}=5\underline{i}+4\underline{j}-6\underline{k}$ and $\underline{c}=4\underline{i}-29\underline{j}+19\underline{k}$ are linearly dependent. Write \underline{c} as a
linear combination of $ ilde{a}$ and $ ilde{b}$.	linear combination of $ ilde{a}$ and $ ilde{b}$.

TEXAS INSTRUMENTS

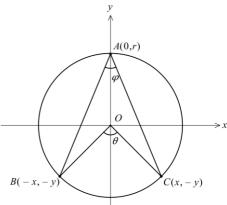
Question: 7.

Use vectors to prove that the quadrilateral formed by the endpoints of two non-concurrent diameters of a circle is a rectangle.



Question: 8.

The diagram below shows a circle of radius r , centred at O(0,0) on the Cartesian plane. The points A(0,r) , B(-x,-y) and C(x,-y) all lie on the circle, where $r,x,y\in\mathbb{R}^+$. Let φ be the angle between \overrightarrow{AB} and \overrightarrow{AC} , and let θ be the angle between \overrightarrow{OB} and \overrightarrow{OC} .

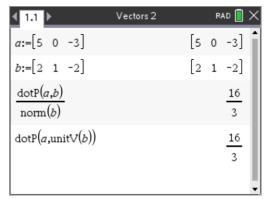


Show that $\cos\left(\theta\right) = \frac{y^2 - x^2}{x^2 + y^2}$ and $\cos\left(\phi\right) = \frac{y}{\sqrt{x^2 + y^2}}$. Hence, prove that $\theta = 2\phi$.

Author: S Crouch

Answers

Question 1 $\frac{16}{3}$

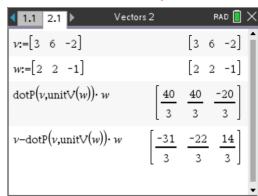


Define the vectors. ctrl es can be used to get :=

The scalar resolute of \underline{a} parallel to \underline{b} is $\frac{\underline{a} \cdot \underline{b}}{|\underline{b}|} = \underline{a} \cdot \hat{\underline{b}}$.

The Dot Product can be found using the dotP command (menu 7 C 3). Magnitudes of vectors can be found using the norm command (menu 7 7 1).

Question 2
$$y = \left(\frac{40}{3}i + \frac{40}{3}j - \frac{20}{3}j\right) + \left(-\frac{31}{3}i - \frac{22}{3}j + \frac{14}{3}k\right) = \frac{20}{3}\left(2i + 2j - k\right) - \frac{1}{3}\left(31i + 22j - 14k\right)$$

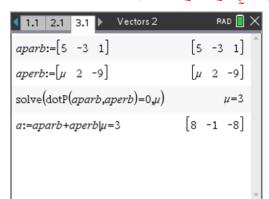


Note that the question specifies that y must be stated as a sum, so find the resolutes individually and the answer is the sum of these resolutes

The vector resolute of \underline{y} parallel to \underline{w} is $\frac{\underline{y} \cdot \underline{w}}{|\underline{w}|^2} \underline{w} = (\underline{y} \cdot \hat{\underline{w}}) \hat{\underline{w}}$ and the vector resolute of \underline{v} perpendicular to \underline{w} is $\underline{v} - (\underline{v} \cdot \hat{\underline{w}}) \hat{\underline{w}}$.

The answer may be verified by adding the final two results.

Question 3 $\mu = 3$; a = 8i - j - 8k



The vector resolute of \underline{a} parallel to \underline{b} and the vector resolute of \underline{a} perpendicular to \underline{b} are perpendicular, by definition. Therefore their dot product is 0. Solving this equation results in $\mu = 3$

The vector \underline{a} is the sum of the two resolutes. Ensure that the condition $\mu = 3$ is included (alternatively, μ can be defined to be 3).

Question 4 Yes, the vectors are linearly independent.

4.1 3.1 4.1 ▶ Vectors 2	RAD 📳 🔀
$\det \begin{bmatrix} 3 & -1 & 5 \\ 2 & -2 & 2 \\ 4 & 3 & -6 \end{bmatrix}$	68
a:=[3 -1 5]	[3 -1 5]
b:=[2 -2 2]	[2 -2 2]
c:=[4 3 -6]	[4 3 -6]
solve $(c=m \cdot a + n \cdot b, \{m,n\})$ 5· $m+2 \cdot n=-6$ and 3· $m+2 \cdot n=4$ a	and $m+2 \cdot n=-$

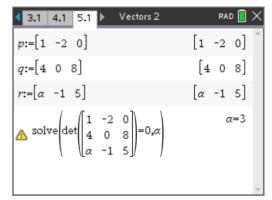
One way to test for linear dependence is to find the determinant of the 3×3 matrix that is constructed from the components of the vectors (each row represents a vector). If the determinant is 0, the vectors are linearly dependent. If the determinant is not 0, the vectors are linearly dependent.

Determinants can be found using the det command ([menu] 7]3).

Alternatively, the equation $\underline{c} = m\underline{a} + n\underline{b}$ can be solved for m and n. Note that there is no solution to the simultaneous equations (: independence).

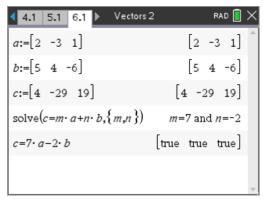
Author: S Crouch

Question 5 $\alpha = 3$



Solving for the zeros of the determinant of the matrix comprised of the vector coefficients gives the value of α .

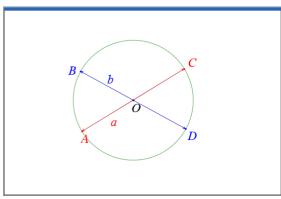
c = 7a - 2bQuestion 6



Set c = ma + nb (that is, c is a linear combination of a and b). Then solve this equation for m and n using the solve command.

The answer can be verified as shown.

Question 7



B

Consider a circle of radius r centred at O.

Let A be a point on the circumference such that $\overrightarrow{OA} = \underline{a}$ is a radius.

Let C be a point such that \overrightarrow{AC} is a diameter. Therefore, $\overrightarrow{OC} = -\underline{a}$.

Similarly, let *B* be a point on the circumference with $\overrightarrow{OB} = b$.

Let D be a point such that \overrightarrow{BD} is a diameter. Then $\overrightarrow{OD} = -\underline{b}$.

See the diagram to the left.

Finding
$$\overrightarrow{AB}$$
: $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -a + b$

Finding
$$\overrightarrow{DC}$$
: $\overrightarrow{DC} = \overrightarrow{DO} + \overrightarrow{OC} = b - a$

 \Rightarrow Therefore $\overrightarrow{AB} = \overrightarrow{DC}$.

Finding
$$\overrightarrow{AD}$$
: $\overrightarrow{AD} = \overrightarrow{AO} + \overrightarrow{OD} = -a - b$

Finding
$$\overrightarrow{BC}$$
: $\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC} = -b - a$

 \Rightarrow Therefore $\overrightarrow{AD} = \overrightarrow{BC}$.

 \Rightarrow The opposite sides of the quadrilateral ABCD are parallel and each pair has the same length.

Finding the angle at vertex A:

$$\overrightarrow{AB} \cdot \overrightarrow{AD} = (-\underline{a} + \underline{b}) \cdot (-\underline{a} - \underline{b})$$

$$= \underline{a} \cdot \underline{a} + \underline{a} \cdot \underline{b} - \underline{a} \cdot \underline{b} - \underline{b} \cdot \underline{b}$$

$$= |\underline{a}|^2 - |\underline{b}|^2 = 0, \text{ since } |\underline{a}| = |\underline{b}| = r$$

Question 8

√ 7.1 7.2 8.1 ▶

 $oa := \begin{bmatrix} 0 & r \end{bmatrix}$

 $ob := \begin{bmatrix} -x & -y \end{bmatrix}$

oc := [x - y]

7.1 7.2 8.1

ab:=ob-oa

ac:=oc-oa norm(ob)

Vectors 2

Vectors 2

 $cosph:=\frac{\text{dotP}(ab,ac)}{\text{norm}(ab)\cdot\text{norm}(ac)}|r=\sqrt{x^2+y^2}$

[0 r]

[-x -y]

[x -y]

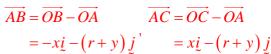
[-x -r-y] **^**

 $\begin{bmatrix} x & -r-y \end{bmatrix}$

$$\overrightarrow{OA} = r\overrightarrow{j}, \overrightarrow{OB} = -x\overrightarrow{i} - y\overrightarrow{j}, \overrightarrow{OC} = x\overrightarrow{i} - y\overrightarrow{j}$$

$$\cos(\theta) = \frac{\overrightarrow{OB} \cdot \overrightarrow{OC}}{|\overrightarrow{OB}| |\overrightarrow{OC}|}$$

$$= \frac{y^2 - x^2}{x^2 + y^2}, \text{ as required}$$



Since \overrightarrow{OB} and \overrightarrow{OC} are radii of the circle, $\left|\overrightarrow{OB}\right| = \left|\overrightarrow{OC}\right| = r$, so $r = \sqrt{x^2 + y^2}$, using the norm command.

$$\cos(\varphi) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\left| \overrightarrow{AB} \right| \left| \overrightarrow{AC} \right|}$$
$$= \frac{y}{\sqrt{x^2 + y^2}}, \text{ as required}$$

To prove that $\,\theta = 2 \varphi$, consider a cosine double angle formula for $\,\varphi$:

$$\cos(2\varphi) = 2\cos^2(\varphi) - 1$$

$$= 2\left(\frac{y}{\sqrt{x^2 + y^2}}\right)^2 - 1$$

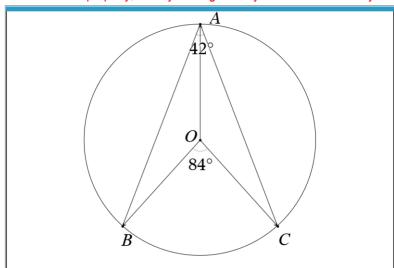
$$= \frac{2y^2}{x^2 + y^2} - 1$$

$$= \frac{y^2 - x^2}{x^2 + y^2}$$

$$= \cos(\theta)$$

 $\cos(2\varphi) = \cos(\theta)$, so $\theta = 2\varphi$, as required.

The CAS can be used to demonstrate this property, and dynamic geometry can be used to verify this is true for all angles.



© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: S Crouch

