STUDENT REVISION SERIES

Vectors Part 1

Each of the questions included here can be solved using the TI-Nspire CX CAS.

Scan the QR code or use the link: https://bit.ly/Vectors-Part1

_						-	
71	П	C1	н	\mathbf{a}	n	-1	
w	ľ	3	и	u			١.

The position vectors of points A and B respectively are $\underline{a}=3\underline{i}-4\underline{j}+5\underline{k}$ and $\underline{b}=5\underline{i}-3\underline{j}+4\underline{k}$. Find the perimeter P of $\triangle OAB$ in the form $\sqrt{a}\left(b+\sqrt{c}\right)$.

i 🗖
34:
泙.

Question: 2.

Consider the vectors $\overrightarrow{OE} = 2\underline{i} + 5\underline{j} - 7\underline{k}$ and $\overrightarrow{OF} = 10\underline{i} + 14\underline{j} + 4\underline{k}$. The point G has a position vector such that \overrightarrow{OG} bisects $\angle EOF$ and $\left|\overrightarrow{OG}\right| = \sqrt{218}$. Find the coordinates of G.

Question: 3.

Relative to an origin O, the points S(1,2,-3), T(5,3,-2), U(6,7,-3) and V(2,6,-4) form a quadrilateral STUV, with diagonal SU. Show that $\cos(\angle TSU) = \cos(\angle USV)$ and hence verify, using $\angle TSV$, that $\cos(2\theta) = 2\cos^2(\theta) - 1$.

_					
റ		-4			
IJ	пе	SII	IC)	m	4

Question: 5.

Find a unit vector $\underline{u} = x\underline{i} + y\underline{j} + z\underline{k}$, x > 0, that is perpendicular to both $\underline{v} = 3\underline{i} + \underline{j} - \underline{k}$ and $\underline{w} = \underline{i} - 3\underline{j} + \underline{k}$.

Question: 6.

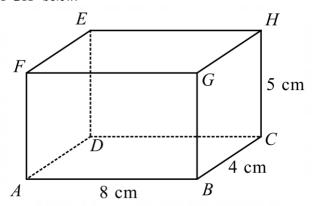
Points A(4,2,-1), B(-1,5,2) and C(3,-3,c) form a right-angled triangle, with the right angle at B. Find the value(s) of c.

Question: 7.

 $\triangle KLM$ has two of its sides formed by the vectors $\overrightarrow{KL} = 3\underline{i} + 2\underline{j} + 5\underline{k}$ and $\overrightarrow{KM} = 7\underline{i} - 4\underline{j} + 9\underline{k}$. Find the length of the median from K.

Question: 8.

Consider the cuboid ABCDEFGH below.

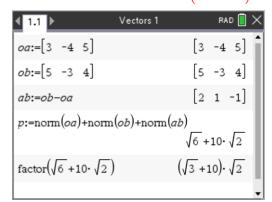


Use vector methods to find $\angle GAC$, correct to the nearest minute.

	
	
 	-

Answers

Question 1
$$P = \sqrt{2} \left(10 + \sqrt{3} \right)$$



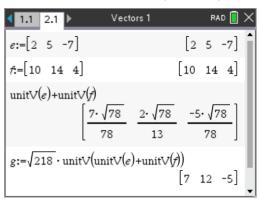
Define the vectors. ctrl [wise] can be used to get :=

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

Magnitudes of vectors can be found using the norm command (menu 7711).

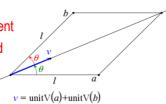
The factor command is useful for numerical expressions too, not only algebraic.

Question 2
$$G = (7,12,-5)$$



The diagonal of a rhombus bisects the adjacent sides. Therefore, the unit vectors of \overrightarrow{OE} and

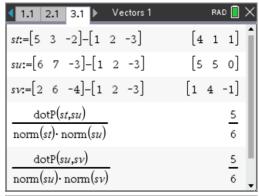
 \overrightarrow{OF} construct adjacent sides of a unit rhombus, and their sum is the diagonal.



To find \overrightarrow{OG} , find the unit vector of the diagonal and multiply this by $\sqrt{218}$. Since $\overrightarrow{OG}=7\underline{i}+12\underline{j}-5\underline{k}$, G has coordinates $\left(7,12,-5\right)$.

Question 3

$$\cos(\angle TSU) = \cos(\angle USV) = \frac{5}{6}; \cos(\angle TSV) = \frac{7}{18}$$



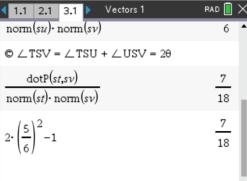
 $\overrightarrow{ST} = \overrightarrow{OT} - \overrightarrow{OS}$, $\overrightarrow{SU} = \overrightarrow{OU} - \overrightarrow{OS}$, $\overrightarrow{SV} = \overrightarrow{OV} - \overrightarrow{OS}$

 $\angle TSU$ is the angle between the tails of \overrightarrow{ST} and \overrightarrow{SU} .

 $\angle USV$ is the angle between the tails of \overrightarrow{SU} and \overrightarrow{SV} .

Hence,
$$\cos\left(\angle TSU\right) = \frac{\overrightarrow{ST} \cdot \overrightarrow{SU}}{\left|\overrightarrow{ST}\right| \left|\overrightarrow{SU}\right|}$$
 and $\cos\left(\angle USV\right) = \frac{\overrightarrow{SU} \cdot \overrightarrow{SV}}{\left|\overrightarrow{SU}\right| \left|\overrightarrow{SV}\right|}$

Using dotP (menu7C3):
$$\cos(\angle TSU) = \cos(\angle USV) = \frac{5}{6}$$
.



Since $\angle TSU = \angle USV = \theta$ and $\angle TSV = \angle TSU + \angle USV$, it can be seen that $\angle TSV = 2\theta$. Finding $\cos(\angle TSV)$:

$$\cos(\angle TSV) = \frac{\overrightarrow{ST} \cdot \overrightarrow{SV}}{|\overrightarrow{ST}||\overrightarrow{SV}|} = \frac{7}{18}$$

Verifying $\cos(2\theta) = 2\cos^2(\theta) - 1$:

$$\frac{7}{18} = 2\left(\frac{5}{6}\right)^2 - 1 \Rightarrow \frac{7}{18} = \frac{7}{18}$$

$$A_{AOAB} = 3\sqrt{6}$$

$$a:=\begin{bmatrix} 2 & 2 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$$

$$b:=\begin{bmatrix} 2 \cdot m & -1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 2 \cdot m & -1 & 1 \end{bmatrix}$$

$$solve\left(\frac{\text{dotP}(a,b)}{\text{norm}(a) \cdot \text{norm}(b)} = \frac{-2}{\sqrt{13}}, m\right) \qquad m=-\sqrt{6}$$

$$\frac{1}{2} \cdot \text{norm}(a) \cdot \text{norm}(b) \cdot \sqrt{1-\left(\frac{-2}{\sqrt{13}}\right)^2} \mid m=-\sqrt{6}$$

$$3 \cdot \sqrt{6}$$

$$3 \cdot \sqrt{6}$$

$$3 \cdot \sqrt{6}$$

$$a:=\begin{bmatrix} 2 & 2 & 2 \end{bmatrix} \qquad (so \ \angle AOB \ is \ obtuse)$$

$$sin(\theta) = \sqrt{1-\cos^2(\theta)}$$

$$A_{\triangle OAB} = \frac{1}{2}|OA||OB|\sin(\angle AOB) = 3\sqrt{6}$$

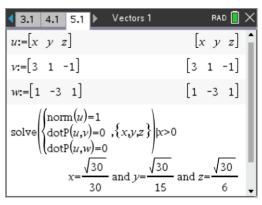
$$\cos\left(\angle AOB\right) = \frac{\overrightarrow{OA} \cdot \overrightarrow{OB}}{\left|\overrightarrow{OA}\right| \left|\overrightarrow{OB}\right|} = -\frac{2}{\sqrt{13}} \text{ (so } \angle AOB \text{ is obtuse)}$$

$$\sin(\theta) = \sqrt{1 - \cos^2(\theta)}$$

$$A_{\triangle OAB} = \frac{1}{2} |OA| |OB| \sin(\angle AOB) = 3\sqrt{6}$$

Question 5

$$\underline{u} = \frac{\sqrt{30}}{30} \underline{i} + \frac{\sqrt{30}}{15} \underline{j} + \frac{\sqrt{30}}{6} \underline{k} = \frac{1}{\sqrt{30}} (\underline{i} + 2\underline{j} + 5\underline{k})$$



$$\begin{bmatrix} x & y & z \end{bmatrix}$$
 Let $u = xi + yj + zk$.

Solving a set of simultaneous equations can be done using menu 3 7 1.

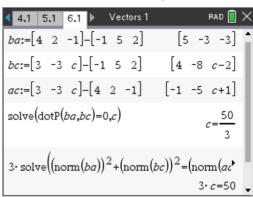
$$\underbrace{u} \text{ is a unit vector, so } |\underline{u}| = 1 \\
\underline{u} \perp \underline{v}, \text{ so } \underline{u} \cdot \underline{v} = 0 \\
\underline{u} \perp \underline{w}, \text{ so } \underline{u} \cdot \underline{w} = 0$$

$$x = \frac{\sqrt{30}}{30}, y = \frac{\sqrt{30}}{15}, z = \frac{\sqrt{30}}{6}$$

Ensure that the restriction that x > 0 is included in the input.

Question 6

$$c = \frac{50}{3}$$



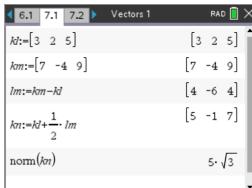
If there is a right angle at B, then $\overrightarrow{BA} \perp \overrightarrow{BC}$.

Finding $\overrightarrow{BA} \cdot \overrightarrow{BC}$, and setting this equal to zero gives $c = \frac{50}{3}$.

Alternatively, Pythagoras' Theorem can be used with the side lengths.

Question 7

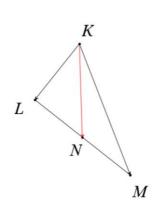
$$KN = 5\sqrt{3}$$
 where N is the midpoint of \overrightarrow{LM} .



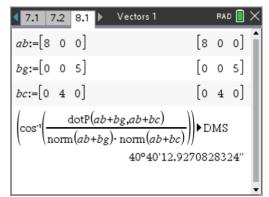
 $\triangle KLM$ is shown on the right, with N the midpoint of LM.

Since N is the midpoint of $\overline{L\!M}$, it can be stated that $\overrightarrow{LN} = \frac{1}{2}\overrightarrow{LM}$.

Therefore the median from K is $\overrightarrow{KN} = \overrightarrow{KL} + \overrightarrow{LN}$ and its length is $5\sqrt{3}$.



Question 8 $\angle GAC = 40^{\circ}40'$



Set A as the origin, relative to which all other vectors are stated.

$$\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{BG} = 8\underline{i} + 5\underline{k}$$

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = 8\underline{i} + 4\underline{j}$$

$$\cos(\angle GAC) = \frac{\overrightarrow{AG} \cdot \overrightarrow{AC}}{|\overrightarrow{AG}||\overrightarrow{AC}|}$$

$$\angle GAC = 40^{\circ}40'$$