STUDENT REVISION SERIES

Complex Numbers Part 1

Question: 1.

If $P(z)$ is a polynomial of degree 4 with all its coefficients real with $a i, b i(a, b \in R)$ as two of its zeros, then the term that does not contain z is:
A. $a b$
B. $a-b$
C. $a+b$
D. $a^{3} b^{3}$
E. $a^{2} b^{2}$

Question: 2.

If $P(z)=z^{3}+2 z^{2}-6 z+a$ and $P(1-i)=0$, then a is equal to:
A. 4
B. -6
C. 8
D. -8
E. 5

Question: 3.

The polynomial $P(z)$ has real coefficients, and $z=2-i$ is a root of $P(z)$.

Which quadratic polynomial must be a factor of $P(z)$?
A. $z^{2}-4 z+5$
B. $z^{2}+4 z+5$
C. $z^{2}-4 z+3$
D. $z^{2}+4 z+3$
E. $z^{2}-4$

Question: 4.

Let $z=x+y i$, where x and y are real numbers, which are not both zero. Which one of the following expressions does not necessarily represent a real number?
A. $z \bar{z}$
B. $z^{-1} z$
C. z^{2}
D. $\operatorname{Im}(z)$
E. $z+\bar{z}$

Question: 5.

Solve the following equations over C:
a) $z^{4}-5 z^{2}-6=0$
b) $z^{3}-8=0$

Question: 6.
Find the sum of the roots of $z^{3}-z^{2}+3 z+5=0$ over C.

Question: 7.

The set of points in the complex plane described by $\left\{z: \operatorname{Im}\left(\frac{z+a i}{z+b}\right)=0\right\}$ where $a, b \in R$ represents:

A a straight line.
B a circle.
C an ellipse.
D a hyperbola.
E a parabola.

Question: 8.

a) Find a polynomial function with real coefficients and with zeros $3,1-2 i$ and $2+i$.
b) Find a quadratic function with roots 4 and $3-i$.

Question: 9.

The complex numbers z_{1} and z_{2} are given by

$$
z_{1}=p+2 i \text { and } z_{2}=1-2 i, p \in Z
$$

a) Find $\frac{z_{1}}{z_{2}}$ in the form $a+b i, a, b \in R$.
b) Given that $\left|\frac{z_{1}}{z_{2}}\right|=13$, find the possible values of p.

Question: 10.

Given that p and q are real and that $1+2 i$ is a root of the equation

$$
z^{2}+(p+5 i) z+q(2-i)=0
$$

determine:
a) the values of p and q,
b) the other root of the equation.

Answers

Question 1 Answer: E

Question 2 Answer: C

1.32 .1	3.1
Refine $p(z)=z^{3}+2 \cdot z^{2}-6 \cdot z+a$	RAD $\square \times$
solve $(p(1-i)=0, a)$	Done

Question 3 Answer: A

Question 4 Answer: C

Question 5

Use Algebra Complex solve:
a) $z= \pm i, \pm \sqrt{6}$
b) $z=-1 \pm \sqrt{3} i$ or $z=2$

Question 6

Sum is 1 .
Use cZeros and sum:

Question $7 \quad$ Answer: A

Question 8

a) $p(z)=z^{5}-9 z^{4}+36 z^{3}-84 z^{2}+115 z-75$

b) $q(z)=z^{2}+(-7+i) z+12-4 i$

Question 9

a) $\frac{z_{1}}{z_{2}}=\frac{p-4}{5}+\frac{2 p+2}{5} i$

b) $p=-29$ or $p=29$

	Rad $\square \times$
$\frac{z 1}{z 2}$	$-\frac{4}{5}+\left(\frac{2 \cdot p}{5}+\frac{2}{5}\right) \cdot \boldsymbol{i}^{\text {- }}$
$\left\|\frac{z 1}{z 2}\right\|=13$	$\frac{\sqrt{5 \cdot\left(p^{2}+4\right)}}{5}=13$
solve $\left(\frac{\sqrt{5 \cdot\left(p^{2}+4\right)}}{5}=13, p\right)$	$p=-29$ or $p=29$
\|	\checkmark

Question 10

a) $p=-1, q=7$
b) $-7+i$
a) Define the polynomial. Note, cannot use $p(z)$ as we have p in the equation, so call it something else:
b) Determine the polynomial for the obtained values of p and q and cSolve for zero to find the other root.

$41.1{ }^{1} 1.2$	*Doc \quad Rad $\square \times$
Define pol $(z)=z^{2}+(p+5 \cdot \boldsymbol{i}) \cdot z+q \cdot(2-i) \quad$ Done	
$\operatorname{pol}(1+2 \cdot i)$	$p+2 \cdot q-13+(2 \cdot p-q+9) \cdot \boldsymbol{i}$
$\begin{aligned} \text { solve }(p+2 \cdot q-13+(2 \cdot p-q+9) \cdot \boldsymbol{i}=0, p) \\ p=-1 \text { and } q=7 \end{aligned}$	

Find the value of the polynomial in $1+2 i$.
As it is a root, then $p(z)=0$, and solve to obtain the values of the pronumerals.

