

Question 1. Evaluate the following: $i + i^2 + i^3 + i^4 + \dots + i^{2018} + i^{2019} + i^{2020}$

A. 0 B. -1 C. i D. -i E. 1

Question 2.

Factorise the following quadratic into linear factors over \mathbb{C} : $z^2 + 16$

A. (z - 16)(z + 16) B. (z - 4)(z + 4) C. $(z - 4i)^2$ D. $(z + 4i)^2$ E. (z - 4i)(z + 4i)

Question 3.

Solve the following equation for z: $z^2 = 2z - 5$

A. -1+2i, -1-2iD. -2-i, -2+iB. -1+2i, 1+2iE. 2-i, 2+iC. 1-2i, 1+2iE. 2-i, 2+i

Question 4.

Solve the following equation over \mathbb{C} : $z^2 + z + (1 + i) = 0$

A. -1+i, i B. -1+i, -i C. -1-i, -i D. -1-i, i E. 1-i, i

Question 5.

Given $P(z) = 2z^3 + 8z^2 - 20z + 24$. Which one of the following is a linear factor of P(x)?

A. z + 1 + i B. z - 1 + i C. z + 1 - i D. -z - 1 - i E. -z - 1 + i

Question 6.

Factorise the polynomial into linear factors over \mathbb{C} : $p(z) = 2z^3 + 9z^2 + 14z + 5$

A.
$$p(z) = (2z + 1)(z + 2 + i)(z + 2 - i)$$

C. $p(z) = (2z - 1)(z + 2 - i)(z - 2 - i)$
E. $p(z) = (2z + 1)(z - 2 + i)(z - 2 - i)$
B. $p(z) = (2z - 1)(z - 2 + i)(z - 2 - i)$
D. $p(z) = (2z + 1)(z + 2 + i)(z - 2 - i)$

Question 7

What is the sum of the complex roots of unity for the polynomial? $z^4 = -1$

A. 2i B. 2-2i C. 2+2i D. 2 E. 0

Question 8.

Which one of the following represents the sum and product of the roots for the polynomial?

	$P(z) = z^4 + z^3 + z^2 + z + 1$							
A.	0 and 1	B.	0 and -1	C1 and 1	D.	1 and -1	Е.	0 and 0

Question 9.

Let $z = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$	Find the ex	act value of:	$z^1 \times z^2 \times z^3$	$\times z^4 \times$	$\times z^{98} \times$	$z^{99} \times z^{10}$	0
A. 1	B.	-1	C <i>i</i>	D.	i	E	. 0

Question 10.

Given $z = (1 + i)^n$, what value of *n* satisfies the following equation? |z| = 16

A. n = 4 B. n = 5 C. n = 6 D. n = 7 E. n = 8

Answers									
1. A	2. E	3. C	4. B	5. B	6. A	7. E	8. C	9. D	10. E

Question 1. Answer A

Each sum of 4 terms results in a total of 0. Since 2020 is divisible by 4, the sum of 2020 terms should also total 0.	<1.12 1.13 1.14 ► *Doc - <i>i+i</i> ² + <i>i</i> ³ + <i>i</i> ⁴	DEG 🚺 🗙 0
Alternatively using sigma notation results in a sum of 0.	$\sum_{n=1}^{2020} {i^n}$	0
Ouestion 2. Answer E		

Use the cPolyRoots(tool. Don't use "= 0"	cPolyRoots $(z^2 + 16, z)$	$\left\{-4\cdot i, 4\cdot i\right\}$

Question 3. Answer C

$z^{2} = 2z - 5 \text{ (rearrange)}$ $z^{2} - 2z + 5 = 0$ Use cPolyRoots (tool	cPolyRoots $(z^2 - 2 \cdot z + 5)$	$(z) \{1-2\cdot i, 1+2\cdot i\}$

Question 4. Answer B

Zeros are $-1 + i$ and $-i$	cPolyRoots $(z^2+z+1+z)$	$(i,z) \{-1+i,-i\}$	
	- · ·		

Question 5. Answer B

There are two ways of doing this. First by using the cPolyRoots(tool. Therefore, the factors of $P(z)$ are $(z + 6)$, $(z - 1 + i)$ and $(z - 1 - i)$.	cPolyRoots $(2 \cdot z^3 + 8 \cdot z^2 - 20 \cdot z)$	$\left\{ \begin{array}{c} -6, 1-i, 1+i \end{array} \right\}$
Therefore $(z - 1 - i)$ is the correct answer.		
Or by defining the polynomial P(z) and testing which multi-choice answer results in	$p(z):=2 \cdot z^3 + 8 \cdot z^2 - 20 \cdot z + 24$	Done
a zero for P(z). Rearranging multi-choice answers gives	p(-1-i)	48+32• i
(A) $-1 - i$	p(1-i)	0
(B) $1 - i$ (C) $1 + i$	p(-1+i)	48-32• <i>i</i>
(D) $-1 + i$	p(-1+-i)	48+32• i
(E) $-1 + i$	p(-1+i)	48−32• i ⊻

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Stephen Broderick

Question 6. Answer A

Factored form is:

$$(z + 2 + i)(z + 2 - i)(z + \frac{1}{2})$$

Which is equivalent to:
 $(z + 2 + i)(z + 2 - i)(2z + 1)$
CPolyRoots $(2 \cdot z^3 + 9 \cdot z^2 + 14 \cdot z + 5, z)$
 $\{-2 - i, -2 + i, \frac{-1}{2}\}$

Question 7. Answer E		
$z^4 = -1$ Rearrange to $z^4 + 1$, use cPolyRoots(tool Using sum(will add up the four roots. 2×10^{-14} is approximated to 0.	$sum(cPolyRoots(z^4+1,z))$	2.e-14

Question 8. Answer C

Using Sum(and product(in front of the cPolyRoots(tool	$sum(cPolyRoots(z^4+z^3+z^2+z+1,z))$	-1.
Answer is -1 and 1	$product(cPolyRoots(z^4+z^3+z^2+z+1,z))$	1.

Question 9. Answer D

Question 10. Answer E

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

TEXAS INSTRUMENTS

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Stephen Broderick

