STUDENT REVISION SERIES

Complex Numbers Part 2

Question 1.
Evaluate the following: $i+i^{2}+i^{3}+i^{4}+\cdots .+i^{2018}+i^{2019}+i^{2020}$
A. 0
B. -1
C. i
D. $-i$
E. 1

Question 2.
Factorise the following quadratic into linear factors over $\mathbb{C}: z^{2}+16$
A. $(z-16)(z+16)$
B. $(z-4)(z+4)$
C. $(z-4 i)^{2}$
D. $(z+4 i)^{2}$
E. $(z-4 i)(z+4 i)$

Question 3.
Solve the following equation for $\mathrm{z}: \quad z^{2}=2 z-5$
A. $-1+2 i,-1-2 i$
B. $-1+2 i, 1+2 i$
C. $1-2 i, 1+2 i$
D. $-2-i,-2+i$
E. $2-i, 2+i$

Question 4.
Solve the following equation over $\mathbb{C}: z^{2}+z+(1+i)=0$
A. $-1+i, i$
B. $-1+i,-i$
C. $-1-i,-i$
D. $-1-i, i$
E. $1-i, i$

Question 5.

Given $P(z)=2 z^{3}+8 z^{2}-20 z+24$. Which one of the following is a linear factor of $P(x)$?
A. $z+1+i$
B. $z-1+i$
C. $z+1-i$
D. $-z-1-i$
E. $-z-1+i$

Question 6.
Factorise the polynomial into linear factors over $\mathbb{C}: \quad p(z)=2 z^{3}+9 z^{2}+14 z+5$
A. $p(z)=(2 z+1)(z+2+i)(z+2-i)$
B. $p(z)=(2 z-1)(z-2+i)(z-2-i)$
C. $p(z)=(2 z-1)(z+2-i)(z-2-i)$
D. $p(z)=(2 z+1)(z+2+i)(z-2-i)$
E. $p(z)=(2 z+1)(z-2+i)(z-2-i)$

Question 7

What is the sum of the complex roots of unity for the polynomial? $z^{4}=-1$
A. $2 i$
B. $2-2 i$
C. $2+2 i$
D. 2
E. 0

Question 8.
Which one of the following represents the sum and product of the roots for the polynomial?

$$
P(z)=z^{4}+z^{3}+z^{2}+z+1
$$

A. 0 and 1
B. 0 and -1
C. -1 and 1
D. 1 and -1
E. 0 and 0

Question 9.
Let $z=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}} \quad$ Find the exact value of: $\quad z^{1} \times z^{2} \times z^{3} \times z^{4} \times \ldots . \times z^{98} \times z^{99} \times z^{100}$
A. 1
B. -1
C. $-i$
D. i
E. 0

Question 10.
Given $z=(1+i)^{n}$, what value of n satisfies the following equation? $|z|=16$
A. $n=4$
B. $n=5$
C. $n=6$
D. $n=7$
E. $\mathrm{n}=8$

1. A	$2 . \mathrm{E}$	$3 . \mathrm{C}$	4. B	5. B	6. A	7. E	8. C	9. D	10. E

Question 1. Answer A
Each sum of 4 terms results in a total of 0 .
Since 2020 is divisible by 4 , the sum of 2020 terms should also total 0 .

Alternatively using sigma notation results in a sum of 0 .

Question 2. Answer E
Use the cPolyRoots(tool.
Don't use "=0"

$\operatorname{cPolyRoots}\left(z^{2}+16, z\right)$	$\{-4 \cdot \boldsymbol{i}, 4 \cdot \boldsymbol{i}\}$

Question 3. Answer C

$z^{2}=2 z-5$ (rearrange)		
$z^{2}-2 z+5=0$		
Use cPolyRoots(tool		

Question 4. Answer B
Zeros are $-1+i$ and $-i$

Question 5. Answer B

There are two ways of doing this. First by using the cPolyRoots(tool. Therefore, the factors of $\mathrm{P}(\mathrm{z})$ are $(\mathrm{z}+6),(\mathrm{z}-1+i)$ and $(\mathrm{z}-$ $1-i)$.
Therefore (z-1-i) is the correct answer.
Or by defining the polynomial $\mathrm{P}(\mathrm{z})$ and testing which multi-choice answer results in a zero for $\mathrm{P}(\mathrm{z})$.
Rearranging multi-choice answers gives
(A) $-1-i$
(B) $1-i$
(C) $-1+i$
(D) $-1+-i$
(E) $-1+i$

$\begin{array}{r} \operatorname{cPolyRoots}\left(2 \cdot z^{3}+8 \cdot z^{2}-20 \cdot z+24, z\right) \\ \{-6,1-\boldsymbol{i}, 1+\boldsymbol{i}\} \end{array}$	
$p(z):=2 \cdot z^{3}+8 \cdot z^{2}-20 \cdot z+24$	Done
$p(-1-\boldsymbol{i})$	$48+32 \cdot \boldsymbol{i}$
$p(1-\boldsymbol{i})$	0
$p(-1+\boldsymbol{i})$	48-32-i
$p(-1+-\boldsymbol{i})$	$48+32 \cdot \boldsymbol{i}$
$p(-1+\boldsymbol{i})$	48-32 \boldsymbol{i}

Question 6. Answer A

Factored form is:

$$
(z+2+i)(z+2-i)\left(z+\frac{1}{2}\right)
$$

Which is equivalent to:

$$
(z+2+i)(z+2-i)(2 z+1)
$$

$$
\begin{aligned}
& \operatorname{cPolyRoots}\left(2 \cdot z^{3}+9 \cdot z^{2}+14 \cdot z+5, z\right) \\
&
\end{aligned}\left\{-2-\boldsymbol{i},-2+\boldsymbol{i}, \frac{-1}{2}\right\}
$$

Question 7. Answer E

$z^{4}=-1$
Rearrange to $z^{4}+1$, use cPolyRoots(tool

Using sum(will add up the four roots.
2×10^{-14} is approximated to 0 .

Question 8. Answer C

Using Sum(and product(in front of the
cPolyRoots(tool
Answer is -1 and 1
$\operatorname{sum}\left(\operatorname{cPolyRoots}\left(z^{4}+z^{3}+z^{2}+z+1, z\right)\right) \quad-1$
$\operatorname{product}\left(\operatorname{cPolyRoots}\left(z^{4}+z^{3}+z^{2}+z+1, z\right)\right) \quad 1$.

Question 9. Answer D

There are several ways to do this calculation.
Adding the powers $1+2+3+\ldots+99+100$ gives 5050. The Sigma template can be used to determine the sum is 5050 .

$$
\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{5050}=i
$$

Or using the product template tool

Question 10. Answer E
$\mathrm{r}={\sqrt{12}+1^{2}}^{\sqrt{2}^{2}}$
$\theta=\tan ^{-1}\left(\frac{1}{1}\right)$
$=45^{\circ}$
In parametric form: (use degree setting)
$\mathrm{x}(\mathrm{t})=\sqrt{2}^{t} \cos (45 \mathrm{t})$
$\mathrm{y}(\mathrm{t})=\sqrt{2}^{t} \sin (45 \mathrm{t})$
$x^{2}+y^{2}=16^{2}$, Use the equation template to graph the circle.
Use the trace function to determine the value of n.

From using the trace function, $\mathrm{n}=8$.

