STUDENT REVISION SERIES

Complex Numbers Part 1

Question 1.
Let $z=\operatorname{cis}\left(\frac{2 \pi}{5}\right)$.
$\operatorname{Im}\left(z^{4}\right)$ is
A. -0.95
B. 0.09
C. 0.31
D. 0.81

Question 21.

If $z=-a+a i$ where $a>0$ then $\operatorname{Arg}\left(z^{3}\right)$ is equal to:
A. $\frac{27 \pi^{3}}{64}$
B. $\frac{\pi}{4}$
C. $\quad-\frac{\pi}{4}$
D. $\frac{9 \pi}{4}$
E. $\frac{3 \pi}{4}$

Question 3
If $w^{2}=16 \operatorname{cis}\left(\frac{\pi}{3}\right)$ then a possible value of w is:
A. $4 \operatorname{cis}\left(\frac{\pi}{6}\right)$
B. $4 \operatorname{cis}\left(\frac{2 \pi}{3}\right)$
C. $8 i s\left(\frac{\pi}{6}\right)$
D. $16 \operatorname{cis}\left(\frac{\pi}{6}\right)$
E. $32 \operatorname{cis}\left(\frac{2 \pi}{3}\right)$

Question 4.
Express $\frac{\sqrt{10}}{2}(1-i)$ in polar form.
A. $\sqrt{5} \operatorname{cis}\left(\frac{\pi}{4}\right)$
B. $\sqrt{5} \operatorname{cis}\left(\frac{-\pi}{4}\right)$
C. $-\sqrt{5} \operatorname{cis}\left(\frac{-\pi}{4}\right)$
D $\operatorname{cis}\left(\frac{-\pi}{4}\right)$
E. $\sqrt{10} \operatorname{cis}\left(\frac{-\pi}{4}\right)$

Question 5.
Convert $\sqrt{3} \operatorname{cis}\left(-\frac{2 \pi}{3}\right)$ to Cartesian form
A. $\frac{-\sqrt{3}}{2}-\frac{3}{2} i$
B. $\frac{\sqrt{3}}{2}-\frac{3}{2} i$
C. $\frac{-\sqrt{3}}{2}+\frac{3}{2} i$
D. $\frac{-2 \sqrt{3}}{25}-\frac{3}{5} i$
$\mathrm{E} \frac{-\sqrt{3}}{5}-\frac{3}{5} i$

Question 6.
Multiplying a non-zero complex number by $\frac{1+i}{1-i}$ results in a rotation about the origin on an argand diagram. What is the rotation?
A. Clockwise by $\frac{\pi}{4}$
B. Clockwise by $\frac{\pi}{2}$
C. Anticlockwise by $\frac{\pi}{4}$
D. Anticlockwise by $\frac{\pi}{2}$
E. Clockwise by π

Question 7.

Which of the following is the principal argument of $\frac{-4+4 \sqrt{3} i}{-\sqrt{2}+\sqrt{2} i}$
A. $\frac{\pi}{12}$
B. $\frac{11 \pi}{12}$
C. $\frac{-13 \pi}{12}$
D. $\frac{13 \pi}{12}$
E. $\frac{-\pi}{12}$

Question 8.
Given that $z_{1}=2+2 i$ and $z_{2}=p-8 i, p \in R$, find:
a) $z_{1} \overline{z_{2}}$ in terms of p
b) The value of p such that $\overline{z_{1}} \overline{z_{2}}$ is purely imaginary

Question 9.

Let $z=1+i \sqrt{3}$
a) Express z in polar form
b) Show that z^{9} is real
c) For what other values of n is z^{n} real.

Answers

1. A	2. E	3.A	4.B	5.A	6.D	7. E

Question 1. Answer A

Question 2. Answer E

$$
\begin{gathered}
z=-a+a i \\
z=a(-1+i)
\end{gathered}
$$

$a>0$ so angle determined by $(-1+i)$

Express using π notation to march alternatives or change angle setting to degrees and convert to radians using $\pi / 180$.

Alternatively use reasoning and sketch second quadrant - real \& imaginary components equal in magniture therefore $3 \pi / 4$

Question 3. Answer A

Angle Settings in radians
Enter value given as shown - expressed in rectangular form automatically
Take sqrt wo find w.
Change settings to degrees and convert to polar.

Question 4. Answer B

| | |
| :--- | :--- | :--- | :--- | :--- |

Question 5. Answer A

	$\sqrt{3} \cdot \mathrm{e}^{\frac{-2 \cdot \pi}{3} \cdot i}$	$-0.866025-1.5 \cdot i$

Question 6. Answer D

Geometrically, the effect of multiplying any complex number by the complex number $z=r \operatorname{cis} \theta$ is to produce an anticlockwise turn through an angle θ about the origin. There anticlockwise rotation of $\frac{\pi}{2}$

Question 7. Answer E

	Similar to Q6 above
Enter expression as given	
Set to degrees	
Use angle function	
Answer in radians.	

Question 8.

$$
\begin{gathered}
z_{1} \overline{z_{2}}=(2+2 i)(p+8 i) \\
=((2 p-16)+(16+2 p) i
\end{gathered}
$$

Require real part $=0$

$$
\begin{gathered}
2 p-16=0 \\
p=8
\end{gathered}
$$

Use calculator for checking if required
Question 9.
a) $z=2 \operatorname{cis}\left(\frac{\pi}{3}\right)$
b) $z^{9}=2^{9} \operatorname{cis}\left(\frac{9 \pi}{3}\right)$ De Moivre's Th $z^{9}=512 \operatorname{cis}(3 \pi)$
$z^{9}=512(\cos (3 \pi)+i \sin (3 \pi))$
But $\sin (3 \pi)=0$ so z^{9} is real
c) $z^{n}=2^{n} \operatorname{cis}\left(\frac{n \pi}{3}\right)$
$\sin (\theta)=0$ for all multiples of pi therefore z^{n} will be real when n is a multiple of 3

