

Question 1.

Let $z = cis\left(\frac{2\pi}{5}\right)$. $Im(z^4)$ is A. -0.95 B. 0.09 C. 0.31 D. 0.81

Question 21.

If z = -a + ai where a > 0 then $Arg(z^3)$ is equal to:

А	$27\pi^{3}$	в	<u>π</u>	С	<u>_</u> <u>π</u>	D	9π	E	3π
11.	64	Ъ.	4	с.	4	Б.	4	ь.	4

Question 3

If $w^2 = 16cis(\frac{\pi}{3})$ then a possible value of w is:

A. $4cis(\frac{\pi}{6})$ B. $4cis(\frac{2\pi}{3})$ C. $8is(\frac{\pi}{6})$ D. $16cis(\frac{\pi}{6})$ E. $32cis(\frac{2\pi}{3})$

Question 4.

Express $\frac{\sqrt{10}}{2}(1-i)$ in polar form.

A. $\sqrt{5}cis(\frac{\pi}{4})$ B. $\sqrt{5}cis(\frac{-\pi}{4})$ C. $-\sqrt{5}cis(\frac{-\pi}{4})$ D $cis(\frac{-\pi}{4})$ E. $\sqrt{10}cis(\frac{-\pi}{4})$

Question 5.

Convert $\sqrt{3}cis(-\frac{2\pi}{3})$ to Cartesian form A. $\frac{-\sqrt{3}}{2} - \frac{3}{2}i$ B. $\frac{\sqrt{3}}{2} - \frac{3}{2}i$ C. $\frac{-\sqrt{3}}{2} + \frac{3}{2}i$ D. $\frac{-2\sqrt{3}}{25} - \frac{3}{5}i$ E $\frac{-\sqrt{3}}{5} - \frac{3}{5}i$

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question 6.

Multiplying a non-zero complex number by $\frac{1+i}{1-i}$ results in a rotation about the origin on an argand diagram. What is the rotation?

A. Clockwise by $\frac{\pi}{4}$ B. Clockwise by $\frac{\pi}{2}$ C. Anticlockwise by $\frac{\pi}{4}$ D. Anticlockwise by $\frac{\pi}{2}$ E. Clockwise by π

Question 7.

Which of the following is the principal argument of $\frac{-4+4\sqrt{3}i}{-\sqrt{2}+\sqrt{2}i}$

 $\frac{\pi}{12}$ B. $\frac{11\pi}{12}$ C. $\frac{-13\pi}{12}$ D. $\frac{13\pi}{12}$ E. $\frac{-\pi}{12}$ A.

Question 8.

Given that $z_1 = 2 + 2i$ and $z_2 = p - 8i$, $p \in R$, find:

- a) $z_1 \overline{z_2}$ in terms of p
- b) The value of p such that $z_1 \overline{z_2}$ is purely imaginary

Question 9.

Let $z = 1 + i\sqrt{3}$

- a) Express z in polar form
- b) Show that z^9 is real
- c) For what other values of n is z^n real.

Answers	5					
1. A	2. E	3. A	4. B	5. A	6. D	7. E

Question 1. Answer A

Question 3. Answer A

Question 4. Answer B

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question 5. Answer A

Question 6. Answer D

Geometrically, the effect of multiplying any complex number by the complex number
$z = r \operatorname{cis} \theta$ is to produce an anticlockwise turn through an angle θ about the origin.
There anticlockwise rotation of $\frac{\pi}{2}$

Question 7. Answer E

	Similar to Q6 above
Enter expression as given	
Set to degrees	
Use angle function	
Answer in radians.	

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Jim Lowe

Question 8. $z_1 \overline{z_2} = (2+2i)(p+8i)$ = ((2p-16) + (16+2p)iRequire real part = 02p - 16 = 0p = 8Use calculator for checking if required

Question 9.

a) $z = 2cis(\frac{\pi}{3})$ b) $z^9 = 2^9cis(\frac{9\pi}{3})$ De Moivre's Th $z^9 = 512cis(3\pi)$ $z^9 = 512(cos(3\pi) + i sin(3\pi))$ But $sin(3\pi)=0$ so z^9 is real	
c) $z^n = 2^n cis\left(\frac{n\pi}{3}\right)$ $sin(\theta) = 0$ for all multiples of pi therefore z^n will be real when n is a multiple of 3	(

© Texas Instruments 2020. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Jim Lowe

TEXAS INSTRUMENTS