Recurrence models for linear growth\& decay

Each of the questions included here can be solved using either the TI-Nspire CX or CX CAS.

Question 1

The first five terms of an arithmetic sequence are $72,65,58,51,44, \ldots$
a Express this sequence as a recurrence relation
\qquad
b Find the value of V_{20}

Question 2

Calculate the first 5 terms for the linear recurrence relation with rule: $V_{n+1}=V_{n}+17, V_{0}=73$

Question 3

An investment of $\$ 1500$ is made attracting a simple interest rate of 3.5% p.a. The interest each year is added to balance of the investment account.
a Represent this investment as a linear recurrence relation
b What is the value of the investment after 7 years?
\qquad
c How long does it take for the initial investment to double in value?

Question 4

A simple interest investment can be modelled on the following linear recurrence rule.
$V_{n+1}=V_{n}+84, V_{0}=2000$. What is the associated annual rate of interest?

Question 5

The following plot displays the value of an asset as it depreciates in value (using flat rate depreciation method).

a What is the annual rate of depreciation?
\qquad
b What is the expected value of this asset after 12 years?

Question 6

Ranjeev purchases a $\$ 10,000$ coffee machine for his business which depreciates annually at a flat rate of 15% of the purchase price.
a By how much does Ranjeev's coffee machine depreciate each year?
\qquad
b Express this flat rate depreciation as a linear recurrence relation
\qquad
c Find the annual depreciated value of the machine over its first 5 years
d He intends to replace the machine when its depreciated value is $\$ 3000$. After how many years will this occur?
\qquad
\qquad

Question 7

A business purchases a photocopier for $\$ 139,000$. It is devalued using a unit cost method of depreciation. After 3 years, it is valued at $\$ 80,000$. In that time, it has been used to make and average of 320,000 copies per year.
a What is the unit cost (to the nearest cent)?
b Express this depreciation as a linear recurrence relation.
\qquad
c What is the depreciated value after 5 years, based on the average usage pattern?
d How many years will it take for the value to be less than $\$ 50,000$?

Answers

Note: The file RFM_linear.tns (as shown in the webinar) can be used to help answer many of these questions.

Question 1

a $\quad V_{n+1}=V_{n}-7, V_{0}=72$
b $\quad V n=V_{0}-7 n=72-7(20)=-68$

Question 2

$73,90,107,124,141$.

Question 3

a \quad Interest $=r / 100 \times V_{0}=3.5 / 100 \times 1500=\$ 52.50$. So $V_{n+1}=V_{n}+52.5, V_{0}=1500$
b $\quad V_{7}=1500+7 \times 52.5=\$ 1867.50$
c Solve $3000=1500+52.5 n$ for n. Using calculator, gives $n=28.5714$ (so 29 years)

Question 4

Interest $=\$ 84$, so $84=r / 100 \times 2000$. Solving gives $r=4.2 \%$ p.a.

Question 5

a From the graph, the value drops by $\$ 50$ per year, so $50=r / 100 \times \$ 850$. Solving for r gives $r=5.88 \%$ (to 2 d.p.)
b $\quad V_{12}=850-12 \times 50=\$ 250$

Question 6

a Annual depreciation $=15 \% \times \$ 10,000=\$ 1500$
b $\quad V_{n+1}=V_{n}-1500, V_{0}=10,000$
c $\quad V_{5}=10,000-5 \times 15,000=\$ 2500$
d Solve $3000=10000-n \times 1500$ for n. Answer is 4.667 years (so 5 years).

Question 7

a Unit cost $=(139,000-80,000) /(3 \times 320,000)=\$ 0.06$ per copy.
b $\quad V_{n+1}=V_{n}-0.06, V_{0}=139,000$
c In 5 years, usage would be $5 \times 320,000=1,600,000$. So Value $=139,000-(1,600,000 \times 0.06)=\$ 43,000$

