
Topic 2.10: Inverse of Exponentials Topic 2.11: Logarithmic Functions

Practice Problem 1

Given the following graph of the function f:

Which is the inverse of f?

(a)

х	3	5
f^{-1}	27	243

(b)

х	3	5
f^{-1}	9	243

(C)		
x	27	243
"		
f^{-1}	3	5
'	_	

(d)

x	9	243
f^{-1}	3	5

Practice Problem 2

The function f is given by $f(x) = 7 \log_3 x$. Which best describes f?

- (a) *f* is a decreasing function that decreases at an increasing rate.
- (b) f is an increasing function that increases at a decreasing rate.
- (c) f is a decreasing function that decreases at a decreasing rate.
- (d) *f* is an increasing function that increases at an increasing rate.

Practice Problem 1 Solution:

(c)

х	27	243
f^{-1}	3	5

These values are part of the table for the inverse of the exponential function $f(x) = 3^x$. Remember to find the inverse you need to switch the input and output values.

Practice Problem 2 Solution:

(b) *f* is an increasing function that increases at a decreasing rate.

This is true because as the logarithmic function increase from left to right, it is also concave down making it increase at a decreasing rate.

**Note: This activity has been developed independently by Texas Instruments. AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. Policies subject to change. <u>Visit www.collegeboard.org.</u>