RAD 📘 🔪

Math Objectives

- Students will explore the validation of a model constructed from a data set.
- Students will be able to determine a regression equation.
- Students will understand that a pattern in the graph of the residuals indicates that the model is not appropriate for the data set.
- Students will look for and express regularity in repeated reasoning (CCSS Mathematical Practice).
- Students will look for and make use of structure (CCSS Mathematical Practice).

Vocabulary

- data set
- residual

- linear
- exponential

About the Lesson

- This lesson includes modeling a data set using linear and exponential regressions.
- As a result students will:
 - Observe a residual plot as well as a scatter plot of the data.
 - Understand that a residual is the actual value of the data minus the predicted value from the regression equation.
 - Conjecture and draw conclusions about the appropriateness of the model based on the residual plot.

II-Nspire™ Navigator™

- Send the TI-Nspire document to students.
- Use Class Capture to view and discuss the scatter plots and residual plots.
- Use Quick Poll questions to adjust the pace of the lesson according to student understanding.

Activity Materials

• Compatible TI Technologies: III TI-Nspire™ CX Handhelds,

4 1.1 2.1 3.1 ▶ Residuals

Residuals

In this activity, you will investigate a residual plot for a set of data after selecting a regression model. The residual plot is used to justify the choice of a function model based on an analysis of the residuals.

Tech Tips:

- This activity includes screen captures taken from the TI-Nspire CX handheld. It is also appropriate for use with the TI-Nspire family of products including TI-Nspire software and TI-Nspire App. Slight variations to these directions may be required if using other technologies besides the handheld.
- Watch for additional Tech Tips throughout the activity for the specific technology you are using.
- Access free tutorials at <u>http://education.ti.com/calcul</u> <u>ators/pd/US/Online-</u> <u>Learning/Tutorials</u>

Lesson Files: Student Activity

- Residuals_Student.pdf
- Residuals_Student.doc

TI-Nspire document

Residuals.tns

Move to page 2.1.

Part 1

Use the following data set in Part 1.

x	-1	0	2	5	7	10
у	-7	-4	-1	6	8	16

1. Enter the *x* values in the column labeled *xvalue*. Enter the *y* values in the column labeled *yvalue*.

◀ 2.	1 2.2 2.3	▶ *Residua	lete	RAD 📘	\times
	A xvalue	B yvalue	С	D	1
=					
1	-1	-7			
2	0	-4			
3	2	-1			
4	5	6			
5	7	8			-
B1	-7			•	۲

Tech Tip: Students must press enter or the down arrow after the last value is entered.

Add a page by pressing ctri docr. Select>Add Calculator. Press menu . Select> Statistics> Stat Calculations, then Linear Regression (mx + b). For X List: select xvalue and for Y List: select yvalue. Press enter for OK..

What is your linear regression equation?

<u>Answer:</u> The linear regression equation is y = mx + b m = 2.00367b = -4.68073

TEACHER NOTES

Residuals TI-Nspire™ CX/CXII

 Add a page by pressing errideer. Select> Add Data & Statistics. Click in the lower gray region to select xvalue and click in the left gray region to select yvalue.

Note: To show the graph of the linear regression equation, press <u>menu</u>. Select > Analyze> Regression, and Show Linear (mx + b). To hide the graph of the linear regression equation, press <u>menu</u>. Select 4>Analyze>Regression, and Hide Linear (mx + b).

The residual is the actual value minus the predicated value. A regression model is justified as appropriate for a data set if the residuals of a regression, the residual plot, appear without pattern. To view the residual plot, click in the left gray region and select stat.resid.

Does your residual plot have a pattern? Would a linear regression be appropriate for this data set?

<u>Answer:</u> The residual plot does not have a pattern. A linear regression is appropriate for this data set.

3. Add a page by pressing erridecer. Select> Add Calculator. To evaluate the predicted values, type f1(-1) and then calculate the residual when x is -1. Calculate f1(0) and then calculate the residual when x is 0. Notice that one residual value is negative and one is positive. What does this tell us about the predicted value as being an underestimate or an overestimate?

Answer:

f1(-1) = -6.68440367; Residual = -0.31559633

f1(0) = -4.680733945; Residual = 0.680733945

If the residual is positive, the predicted value is an underestimate. If the residual is negative, the predicted value is an overestimate.

Note: To view the residual list for all of the data points, press var and select stat.Resid. Scroll to the right to see more values.

2.3 2.4 3.1 ▶ *Residualete	RAD 📘	Х
<i>f1</i> (-1)	-6.6844	1
-76.6844036697247	-0.315596	I
<i>f1</i> (0)	-4.68073	I
-44.6807339449541	0.680734	I
stat.Resid {-0.315596,0.680734,-0.3264	606,0.662385,→	

Teacher Note: The graph of the scatter plot with the regression equation may be helpful to visualize the overestimate or underestimate.

Move to page 3.1.

Part 2

Use the following data set in Part 2.

x	-1	0	1	2	4	5
у	0.2	0.6	0.9	2.1	7.9	16.2

4. Follow the steps in Part 1. Enter the *x* values in the column labeled *xvalue*. Enter the *y* values in the column labeled *yvalue*. Compute a linear regression, view the scatter plot, and view the residual plot. Does your residual plot have a pattern? Would a linear regression be appropriate for this data set?

_				
◀ 2.	3 2.4 3.1	▶ *Residua	ıl ete	rad 📋 🗙
	A xvalue	B yvalue	C D	^
=				-
3	1	0.9		
4	2	2.1		
5	4	7.9		
6	5	16.2		
7				•
B7				4 >

12	.4 3.1 3.2	▶ *Residualete RAD	$ \times$
Lin	RegMx <i>xval</i>	ue,yvalue,1: CopyVar stat.Reg	-
	"Title"	"Linear Regression (mx+b)"	
	"RegEqn"	"m•x+b"	
	"m"	2.47267	
	"Ъ"	0.11677	
	"r ² "	0.817305	
	"r"	0.904049	
	"Resid"	"{}"	
1			

<u>Answer:</u> The residual plot appears to have a pattern. A linear regression is not appropriate for this data set.

5. Now compute an exponential regression. Add a page by pressing err]docr. Select > Add Calculator. Press menu. > Statistics, >Stat Calculations, then \ Exponential Regression. View the residual plot. Does your residual plot have a pattern? Would an exponential regression be appropriate for this data set?

<u>Answer:</u> The residual plot does not appear to have a pattern. An exponential regression is appropriate for this data set.

Extensions

1. Find a data set that models a quadratic and ask the students to follow the steps for a quadratic regression. Observe the scatter plot and the residual plot.

Wrap Up

Upon completion of the lesson, the teacher should ensure that students are able to understand:

- · How to input data and view scatter plots.
- How to compute linear, quadratic, and exponential regressions.
- How to plot residuals and determine if the residual plot has a pattern.