Transformations of Exponential Functions Name	
Student Activity Part 2	Class
In this activity, you will examine the family of exponential functions of the form $f(x) = b^{a \cdot x} + c$ where <i>a</i> , <i>b</i> , and <i>c</i> are parameters. You will use the Transformation App (Transfrm) on your handheld to manipulate these parameters in Questions 1 - 3.	NORMAL FLOAT AUTO REAL RADIAN MP TRANSFORMATION GRAPHING APP Plot1 Plot2 Plot3 QUIT-APP MIY1BB ^{AXX} +C MIY2= NY3= NY4= NY5= NY6= NY6=

The parameter *b* is the base of the exponential function and b > 0, $b \neq 1$. Using the transformation app, change the value of a parameter by entering the equation for each question into Y₁ and Y₂, and pressing the arrow keys to manipulate each parameter of the function on the graph.

Question 1

Graph the following functions: $Y_1 = B^x$ and $Y_2 = B^x + C$. For specific values of $B \ (B \neq 1)$, press the arrows to change the value of *C*, and observe the changes in the graph of Y_1 .

- a. Explain why for every value of *B* the graph of Y_2 passes through the point (0, C+1).
- b. Is it possible for the graph of $Y_2 = B^x + C$ to intersect the *x*-axis? Explain why or why not.

Question 2

Graph the following function: $Y_2 = B^{A \cdot x}$. For a specific value of *B*, click the arrows to change the value of *A*, and observe the changes in the graph of Y_1 . Repeat this process for other values of *B*. Describe the effect of the parameter *A* on the graph of $Y_2 = B^{A \cdot x}$. Discuss the effects of both positive and negative values of *A*.

Question 3

Graph the following functions: $Y_1 = B^{A \cdot x}$ and $Y_2 = B^{A \cdot x} + C$. For specific values of *A* and *B*, click the arrows to change the value of *C*, and observe the changes in the graph of Y_1 . Describe the effect of the parameter *C* on the graph of $Y_2 = B^{A \cdot x} + C$. Discuss the effects of both positive and negative values of *C*.

Question 4

Turn off the Transformation App by selecting Quit-App on the y = screen. Graph each function given and answer the following questions.

- a. Display the graphs of $Y_1 = 3^{2x}$ and $Y_2 = 9^x$.
 - (i) How is the graph of Y_2 related to the graph of Y_1 ?
 - (ii) Use the properties of exponents to justify your answer.
- b. Display the graph of $Y_1 = 3^{-2x}$ and $Y_2 = \left(\frac{1}{9}\right) \cdot 3^x$.
 - (i) How is the graph of Y_2 related to the graph of Y_1 ?
 - (ii) Use the properties of exponents to justify your answer.
- c. Use your answers to parts (a) and (b) to explain the relationship between a horizontal dilation of the graph of an exponential function and a change of base of the exponential function.

Question 5

 $e \approx 2.71828...$

- 5. Without using your calculator, match each equation with its corresponding graph. Check your answers by graphing each function on your calculator.
 - (a) $f(x) = 2^{3x}$ (b) $f(x) = -(2)^{3x}$ (c) $f(x) = 2^{-3x}$ (d) $f(x) = 2^{3x} + 4$ (e) $f(x) = e^{-x}$ (f) $f(x) = e^{x} - 3$

Note: The function in part (e) is the "natural" exponential function and involves the number

NORMAL FLOAT AUTO REAL RADIAN MP NORMAL FLOAT AUTO REAL RADIAN MP (i) n (ii) n (iii) NORMAL FLOAT AUTO REAL RADIAN MP (iv) NORMAL FLOAT AUTO REAL RADIAN MP Π П NORMAL FLOAT AUTO REAL RADIAN MP NORMAL FLOAT AUTO REAL RADIAN MP (v) (vi) n п