Differential Calculus Test 1A

Question: 1

The function $f(x)=x^{2}+6 x+5$ has a tangent at $x=-2$. The equation to the tangent is:
a) $y=2 x-7$
b) $y=2 x$
c) $y=2 x+1$
d) $y=-2 x-1$
e) $y=-2 x+1$

Question: 2
For the cubic equation shown below, which one of the following statements is true:
a) $f^{\prime}\left(\frac{a+b}{2}\right)=0$
b) $\quad f^{\prime}(x)<0$ for $x<a$
c) $f^{\prime}(x)<0$ for $b<x<c$
d) $f^{\prime}(x)>0$ for $x>c$
e) All of the above

Question: 3

If $f(x)=x^{3}+6 x^{2}+a x+7$ has no turning points then:
a) $a=12$
b) $a>12$
c) $a<12$
d) $a=0$
e) $a<0$

Question: 4

If the tangent to $g(x)=\ln (x)$ at the point where $x=a$ passes through the origin, then a equals.
a) 0
b) 1
c) $\quad 2.7$
d) e
e) π

Question: 5

If $f(x)=\sqrt{g(x)}, g(4)=9$ and $g^{\prime}(4)=6$ then $f^{\prime}(4)$ is equal to:
a) 1
b) 2
c) 3
d) $\sqrt{6}$
e) $3 \sqrt{6}$

Question: 6

If $f(x)=\frac{g(x)}{x}$ and $g(2)=4$ and $g^{\prime}(2)=6$ then $f^{\prime}(2)$ is equal to:
a) 1.5
b) 2
c) 3
d) 6
e) 8

[^0]
Question: 7

Given the function: $f(x)=\frac{\sin (x)}{x}$, then at $x=0$ there is a:
a) Local maximum
b) Local minimum
c) Stationary point of inflection
d) Asymptote
e) Point of discontinuity

Question: 8
Given the function: $f(x)=\left\{\begin{array}{cc}\sin (x) & x \geq 0 \\ 0 & x<0\end{array}\right.$, which of the following is true?
a) The function is not continuous at $x=0$ but is differentiable at $x=0$
b) The function is not continuous at $x=0$ and not differentiable at $x=0$
c) The $\lim _{x \rightarrow 0} f(x)$ exists so the function is differentiable at $x=0$
d) The function is continuous at $x=0$ and differentiable at $x=0$
e) The function is continuous at $x=0$ but not differentiable at $x=0$

Question: 9

The average rate of change of the function $f(x)=x \cos (x)$ over the interval $\left[\frac{\pi}{3}, \frac{\pi}{6}\right]$ is equal to:
a) $\frac{1}{2}(2-\sqrt{3})$
b) $\frac{\pi}{12}(\sqrt{3}-2)$
c) $\frac{\sqrt{2}}{8}(4-\pi)$
d) 0.5330
e) 0.2791

Question: 10
The hypotenuse of a right angled isosceles triangle is increasing at a rate of $2 \sqrt{2} \mathrm{~cm} / \mathrm{min}$. When the hypotenuse is equal to $6 \sqrt{2}$, the rate of increase of the area of the triangle, in $\mathrm{cm}^{2} / \mathrm{min}$ is:
a) 24
b) 12
c) 6
d) $12 \sqrt{2}$
e) $6 \sqrt{2}$

[^1]
[^0]: (C) Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

[^1]: (c) Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

