Topic 2.4: Exponential Function Manipulation

Transformations

Practice Problem 1

The function g is given by $g(x) = 2^{3x} + 4$. Which of the following is an equivalent form for g(x)?

- (a) $g(x) = 8 \cdot 2^x + 4$
- (b) $g(x) = 8^{x} + 4$
- (c) $g(x) = 2^x + 12$
- (d) $g(x) = 8^{x} + 6$

Practice Problem 2

The function *f*, is given by $f(x) = 5^{(3x)}$. Which of the following statements describes characteristics of the function *f* in the *xy*-plane?

- (a) The graph of f is a vertical dilation of $y = 5^x$, and f(x) is equivalent to 125^x .
- (b) The graph of f is a vertical dilation of $y = 5^x$, and f(x) is equivalent to $125 \cdot 5^x$.
- (c) The graph of f is a horizontal dilation of $y = 5^x$, and f(x) is equivalent to 125^x .
- (d) The graph of f is a horizontal dilation of $y = 5^x$, and f(x) is equivalent to $125 \cdot 5^x$.

(c) The graph of f is a horizontal dilation of $y = 5^x$, and f(x) is equivalent to 125^x .

Using the property: $a^{x \cdot y} = (a^x)^y$, you can rewrite $5^{3x} = (5^3)^x = 125^x$. The function $f(x) = 5^{(3x)}$ represents a horizontal dilation of the function $y = 5^x$ by a factor of $\frac{1}{3}$.

**Note: This activity has been developed independently by Texas Instruments. AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. Policies subject to change. <u>Visit www.collegeboard.org.</u>

Transformations of Exponential Functions Part 2 Practice Problem 1 Solution:

Practice Problem 2 Solution:

Using the property: $a^{xy} = (a^x)^y$, you can rewrite $2^{3x} = (2^3)^x = 8^x$. The function also has a vertical translation of 4 units which does not affect the change of base of the exponential expression.

s Part 2 AP® PRACTICE QUESTIONS